
International Journal of P2P Network Trends and Technology Volume 14 Issue 1, 1-9, Jan-Apr 2024

ISSN: 2249–2615 / https://doi.org/10.14445/22492615/IJPTT-V14I1P401 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Comprehensive Investigation on the Identification of

Real and Encrypted Synthetic Network Attacks using

Machine Learning Algorithms

Swati Chaudhari1,2*, Pratyush Shukla3, Archana Thakur4

1Institute of Engineering and Technology, Devi Ahilya Vishwavidyalaya, Indore, India.

2Department of Atomic Energy, Raja Ramanna Centre for Advanced Technology, Govt. of India, Indore, India.
3Department of Computer Science and Engineering, Jaypee University of Engineering and Technology, Guna, India.

4School of Computer Science and Information Technology, Devi Ahilya Vishwavidyalaya, Indore, India.

*Corresponding Author : snc711@gmail.com

Received: 02 February 2024 Revised: 06 March 2024 Accepted: 20 March 2024 Published: 08 April 2024

Abstract - Network Intrusion Detection Systems (NIDS) are enhanced and updated consistently, but at the same the, network

intruders and hackers are also modernizing and renovating their methodologies. Hence, it is very important to develop novel

Intrusion Detection Systems which is constructive to deal with heterogeneous network attacks. Recent research indicates that

the Intrusion Detection Systems powered by Machine Learning techniques are capable of curbing these issues up to a great

extent but still, there is a long way to go. There are several distinguished models and algorithms exist which are capable of

detecting network attacks. Most of the existing research is focused on building a robust system against common and prevalent

network attack categories. These approaches do not extend to some peculiar and menacing network attacks, which are often

encrypted to spoof the Intrusion Detection Systems. Hence, we have proposed an effective Decision Tree Model which is

capable of detecting such attacks with nearly 100% accuracy. We have also investigated and presented a comparative study

of more than 10 machine learning models using one of the latest datasets, the HIKARI-2021 [1] dataset. Moreover, the existing

research work, particularly dealing with encrypted attacks, does not explicitly indicate the detection accuracy of the encrypted

network attack category. Hence, we have also worked on individual network attack categories for various machine-learning

approaches.

Keywords - Encrypted Network Attack, Network Intrusion Detection System (NIDS), Decision Tree Algorithm, Machine

Learning, Cyber Security.

1. Introduction
A Network Intrusion Detection System (NIDS) is a

security mechanism that observes and analyses the traffic

flowing through a network for any indications of

unauthorized or harmful activity. By scrutinizing the network

packets, NIDS can recognize patterns or actions that may

suggest a security breach. NIDS is designed to recognize and

prevent unauthorized entry, data breaches, malware attacks,

and other forms of cyber-attacks that could potentially

compromise the network and its assets. In Sekar et al.’s [2]

research paper, they indicate that an efficient NIDS must

have the capacity to detect various types of attacks with a

high degree of accuracy in real time while minimizing false

positives. Furthermore, the system should be scalable and

able to manage high volumes of network traffic. Shun and

Malki [3] propose a unique method which uses neural

networks to boost the NIDS’s accuracy and speed.

Meanwhile, Sultana et al. [4] recommend machine learning

techniques in SDN-based NIDS to improve its ability to

detect and react to network threats. Moreover, a well-

designed NIDS should have the ability to detect an extensive

range of attacks, reduce false positives, scale well, and

incorporate advanced technologies such as neural networks

and machine learning to enhance its performance.

Machine learning has a crucial role in improving the

efficacy of NIDS. Sinclair et al. [5] demonstrate an early

example of applying machine learning techniques to NIDS

through a Decision Tree algorithm used to identify network

connections and classify them based on their behavior.

Supervised machine learning algorithms have become

increasingly popular in recent years for NIDS, with Taher et

al. [6] using a supervised machine learning algorithm with

feature selection to enhance the accuracy of NIDS. The

https://www.ijpttjournal.org/archives/ijptt-v11i2p404
http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/

Swati Chaudhari et al. / IJPTT, 14(1), 1-9, 2024

2

authors used a mutual information-based approach to select

the most relevant features and then applied a Random Forest

classifier to classify network traffic. Furthermore, Sommer

and Paxson [7] proposed using unsupervised machine-

learning techniques to detect network anomalies. The authors

suggested that unsupervised machine learning algorithms

could overcome the limitations of signature-based detection

methods. In conclusion, machine learning in NIDS has the

potential to improve intrusion detection accuracy efficiency

and provide better protection against evolving network

threats.

Encrypted network attacks involve the use of encryption

to hide malicious activities in network traffic, making them

challenging to detect and prevent. As noted in Al-Hababi and

Tokgoz’s [8] research paper, these attacks are often carried

out using man-in-the-middle techniques, which involve

intercepting and altering network traffic. These attacks are

difficult to detect due to their use of encryption to conceal

payloads, obfuscation of network traffic patterns, and the

need to analyze large volumes of encrypted traffic in real

time. To address these challenges, researchers have proposed

using machine learning algorithms for encrypted network

traffic analysis. For instance, Conti et al. [9] developed a

machine learning-based framework for analysing Android

encrypted network traffic to identify user actions. Shen et al.

[10] conducted a comprehensive survey of machine learning-

powered encrypted network traffic analysis, which identified

the benefits and limitations of different techniques and

suggested avenues for future research.

2. Related Work

The authors in [11] proposed a new approach introduced

for network anomaly intrusion detection by utilizing a Dual

Intrusion Detection System (Dual-IDS) that combines the

outputs jof two machine learning models. The first model

uses Gradient Boosting Decision Trees (GBDT) trained on

raw network packet data. In contrast, the second model

employs a bagging ensemble of GBDT models trained on

statistical features extracted from the packet data. The authors

propose that their Dual-IDS approach can offer better

accuracy and robustness than individual models, particularly

when confronted with adversarial attacks. To evaluate the

performance of their proposed model, the authors used the

Hikari-2021 [1] dataset. The proposed model achieved an

accuracy, precision, recall, and F1-score of 99.91%.

There are various limitations of the proposed model in

detecting the Hikari-2021 dataset classification. The model

focuses mainly on binary classification, which categorizes

normal and attack data only. However, the Hikari-2021

dataset comprises various types of attacks, and this limitation

may affect the model’s accuracy and effectiveness in

detecting different types of attacks. Secondly, the proposed

model uses feature selection techniques that may not be

optimal for the Hikari-2021 dataset’s encrypted traffic data.

As a result, the model may not extract relevant features from

the encrypted data, leading to reduced accuracy. Also, the

model’s performance may be impacted by the dataset’s

imbalance, with certain attack types being significantly

underrepresented.

The other prominent work is done in [12], where the

authors analyzed the performance of various machine

learning algorithms in detecting network intrusions using the

HIKARI- 2021 dataset. According to the study [12], the

Random Forest algorithm exhibited superior performance in

terms of accuracy, precision, and F1-score for detecting

attacks when compared to other algorithms, including the K-

Nearest Neighbors Algorithm, Multilayer perceptron and

Support Vector Machine. Interestingly, the study discovered

that utilizing all 86 features in the dataset did not necessarily

result in optimal performance. Instead, feature selection

techniques were found to be beneficial in reducing the

number of features while maintaining high detection

accuracy. Additionally, the study revealed that the

algorithm’s performance varied depending on the type of

attack, with certain algorithms proving more effective for

specific types of attacks than others. The authors emphasized

the importance of using feature selection techniques and

selecting appropriate machine learning algorithms for

different types of attacks to achieve optimal detection

accuracy.

However, the study [12] focused solely on the

performance of four machine learning algorithms, which may

not provide a comprehensive representation of all available

algorithms. Moreover, the study failed to investigate the

potential impact of varying hyperparameters on the

performance of each algorithm or to examine their

interpretability. Interpretability is crucial in understanding

how algorithms arrive at their predictions and enhancing

transparency and trustworthiness. Additionally, the study

neglected to examine the influence of different preprocessing

techniques on the algorithm’s performance.

The current research on detecting network attacks in the

Hikari-2021 dataset has certain limitations, highlighting the

need for a new approach. Decision Tree models are a

promising solution due to their effectiveness in other

anomaly detection applications. These models can handle

large feature sets, making them suitable for comprehensive

network traffic analysis. Additionally, they can detect

patterns across multiple layers of network traffic, which is

particularly useful for complex attacks. Moreover, Decision

Tree models can handle both static and dynamic data,

including encrypted traffic, further enhancing their ability to

detect anomalies. A Decision Tree-based IDS approach can

potentially address the limitations of existing studies and

provide a more comprehensive and accurate detection of

network attacks in the Hikari-2021 dataset.

Swati Chaudhari et al. / IJPTT, 14(1), 1-9, 2024

3

3. HIKARI-2021 Dataset
The Hikari-2021 dataset consists of two parts: real

network traffic and synthetic encrypted traffic, each having a

specific function in the area of network intrusion detection.

The real traffic data were obtained from the Japan Coast

Guard network during their regular maritime patrol, resulting

in roughly 3 million network packets captured in a month. On

the other hand, the synthetic encrypted traffic was produced

using the BotNET simulation tool, resulting in almost 1

million network packets. Both datasets are annotated with

information regarding the type of attack, such as DDoS, brute

force, and SQL injection attacks, that is either simulated or

observed. The dataset is publicly accessible and can be used

for designing and assessing intrusion detection systems,

particularly those with the ability to handle encrypted traffic.

The Hikari-2021 dataset offers several advantages over

existing network intrusion detection datasets. Firstly, it

combines real and synthetic encrypted traffic data, providing

a more precise representation of actual network traffic. This

is in contrast to other datasets that rely solely on synthetic

data, which may not accurately capture the complexity and

diversity of real-world network traffic. Secondly, the dataset

is labeled with attack information, making it easier to

evaluate intrusion detection systems and refine them

accordingly. Thirdly, it is publicly available, promoting

transparency and encouraging collaboration among

researchers and developers. Lastly, the Hikari-2021 dataset is

specifically designed for encrypted traffic, a vital feature

given the increasing prevalence of encryption in modern

networks. Overall, the Hikari-2021 dataset is a

comprehensive, representative, and specifically designed

intrusion detection dataset with labeled information, which

can assist in the development of more accurate and effective

intrusion detection systems.

KDD99 [13] has the highest number of records, followed

by UNSW-NB15 [14], CICIDS-2017 [15], and Hikari-2021.

However, Hikari-2021 has the highest number of features

among the four datasets. KDD99 and UNSW-NB15 focus on

intrusion detection for networks, while CICIDS-2017 is

designed for detecting intrusions in industrial control

systems, and Hikari-2021 is specifically designed for

encrypted traffic. KDD99 and UNSW-NB15 have

imbalanced datasets, while CICIDS-2017 and Hikari-2021

have more balanced datasets.

All four datasets have labeled data, but Hikari-2021 and

CICIDS-2017 provide more detailed labeling information.

Hikari-2021 is the only dataset that includes both real and

synthetic data for a more accurate representation of real-

world network traffic, while the other datasets rely solely on

synthetic data. In summary, each dataset has its own strengths

and weaknesses, but Hikari-2021 is exceptional for its

detailed labeling information, the combination of real and

synthetic data, and comprehensive representation of

encrypted network traffic.

The Hikari-2021 dataset includes various classifications

of network traffic for assessing the effectiveness of intrusion

detection systems. The ”Background” classification includes

ordinary network traffic, such as browsing and emailing, that

is not associated with any malicious activity. The ”Benign”

classification consists of non-threatening traffic, such as

traffic related to software updates and network management.

The ”Bruteforce” classification involves traffic linked to

brute-force attacks, where an attacker tries to gain access to a

system by guessing passwords. The ”Bruteforce-XML”

classification specifically targets XML-based services and

may involve traffic related to XML injection attacks or other

forms of XML-based attacks. The ”Probing” classification

pertains to traffic linked to reconnaissance or probing

activities where an attacker attempts to gather information

about a target network or system. The ”XMRIGCC Crypto

Miner” classification is associated with network traffic

related to the XMRIGCC cryptocurrency miner, a type of

malware that mines cryptocurrency using a victim’s

computer. By utilizing a diverse set of traffic types, the

Hikari-2021 dataset offers a more inclusive and

representative dataset for testing intrusion detection systems.

The dataset Hikari-2021 encompasses 86 characteristics

that aid in developing intrusion detection systems and

represent network traffic data. These features can be broadly

classified into different groups, including statistical features

(e.g., standard deviation of packet length, mean packet

length, etc.), general network traffic features (e.g., number of

packets, packet length, etc.), and protocol-specific features

(e.g., DNS query type, HTTP request method, etc.). Some

specific features of the dataset are the total bytes and packets

in a flow, the ratio of incoming to outgoing packets, the

protocol of the flow, the DNS query type, the HTTP request

method, and many more. With this comprehensive set of data

points, intrusion detection systems can be trained and

assessed, and network security measures’ accuracy and

effectiveness can be improved.

4. Proposed Decision Tree Model
A Decision Tree [16] is a structured model that follows

a hierarchical arrangement comprising nodes and edges.

Nodes in the tree represent evaluations of specific attributes

of objects being classified, and edges indicate the potential

outcomes of those evaluations. Each internal node in the tree

corresponds to a decision point about an attribute, while each

leaf node represents a class or probability distribution for that

class. The decision-making process begins at the top of the

tree (root node) and continues downwards until a leaf node is

reached. At this point, the object being classified is given a

class label. The process of constructing a Decision Tree

involves creating a tree from a set of training examples that

optimally divides the data into homogeneous regions based

on attribute values. Decision Trees are non-parametric

models since they do not require any prior assumptions about

the data distribution or the functional form of the decision

Swati Chaudhari et al. / IJPTT, 14(1), 1-9, 2024

4

boundary. Decision Trees [17] are popular due to their

interpretability, ease of use, and high accuracy. Decision

Trees can handle both categorical and continuous data and

can be used for both classification and regression tasks. They

are non-parametric models, meaning they do not require any

prior assumptions about the data distribution or decision

boundary. Additionally, Decision Trees can handle missing

values and are resistant to outliers.

In our approach, the Decision Tree model begins by

encoding the categorical variable ’Traffic Category’ using

LabelEncoder and then splits the data into train and test sets,

with a test size of 0.25 and a random state of 42. The training

data has 416458 observations, while the test data has 138820

observations. This Decision Tree model was created using the

Decision Tree Classifier from the scikit-learn library. The

maximum depth of the Decision Tree was controlled by

setting the max depth parameter to 3. To ensure the

reproducibility of the results, the random state parameter was

set to 42, which set the random seed.

The model was trained on the train data using the fit

function, and then predictions were generated on the test data

using the predict function. These predictions were used to

evaluate the performance of the Decision Tree model on the

test data.

Fig. 1 Total Impurity vs Alpha for Training Set Effective Decision Tree

(Our Approach)

Fig. 2 Decreasing Trend of Alpha hyperparameter of Effective

Decision Tree (Our Approach)

Fig. 3 Accuracy vs Alpha for Testing set of Effective Decision Tree

(Our Approach)

The Decision Tree model comprises several parameters,

each with its own specific role. These parameters were

carefully set to ensure optimal performance of the model. The

alpha parameter controls the complexity of the Decision Tree

by setting the minimum value of cost-complexity pruning. In

this model, the value is set to 0.0, indicating that no pruning

is applied. The class weight parameter adjusts the weights of

the classes in the dataset to balance the impact of the classes

with fewer instances. The criterion parameter determines the

function to measure the quality of the split, which in this

model is set to gini. The max depth parameter controls the

maximum depth of the Decision Tree and is set to 3, while

the max features parameter controls the number of features to

consider and is set to None.

The max-leaf nodes parameter controls the maximum

number of leaf nodes that the Decision Tree can have and is

set to None. The min impurity decrease parameter sets the

minimum threshold for the impurity decrease of a node to

split and is set to 0.0. The min samples leaf parameter sets the

minimum number of samples required to be at a leaf node and

is set to 1, while the min samples split parameter sets the

minimum number of samples required to split an internal

node and is set to 2. The min weight fraction leaf parameter

sets the minimum fraction of the sum total of weights

required to be at a leaf node and is set to 0.0. The random

state parameter sets the random seed for the Decision Tree,

ensuring reproducibility of the results. In contrast, the splitter

parameter determines the strategy to choose the split at each

node and is set to best. By using the above parameters in the

Decision Tree model, the most optimal results were achieved

compared to other hyperparameter tuning techniques.

The Decision Tree structure consists of 11 nodes, each

representing a specific condition or action. The tree starts at

node 0, which is a split node with two possible paths. If the

condition X[:, 0] <= 181179.5 is true, the tree goes to node 1;

otherwise, it goes to node 6. Node 1 is another split node, and

depending on the condition X[:, 0] <= 11028.5, it goes to

Swati Chaudhari et al. / IJPTT, 14(1), 1-9, 2024

5

either node 2 or node 5. Similarly, node 2 is also a split node,

and based on the condition X[:, 0] <= 5144.0, it goes to node

3 or node 4. Nodes 3 and 4 are leaf nodes representing a final

outcome or decision.

Similarly, node 5 is also a leaf node. Node 6 is another

split node, and based on the condition X[:, 0] <= 528610.5, it

goes to node 7 or node 8. Node 7 is a leaf node, and node 8 is

another split node with two possible paths based on the

condition X[:, 33] <= 13.8023. Finally, nodes 9 and 10 are

leaf nodes representing the final outcome or decision. The

Decision Tree algorithm utilizes the Gini index to minimize

impurity while recursively searching for the optimal feature

and threshold values that split the data into two subsets. The

algorithm selects the feature and threshold values that can

achieve maximum reduction in the Gini index by trying all

possible combinations. For instance, node 0 uses the first

feature (X[:, 0]) as the splitting criterion and has a threshold

value of 181179.5. Nodes 1, 2, and 6 also use the first feature

but have different threshold values of 11028.5, 5144.0, and

528610.5, respectively. Node 9, on the other hand, splits the

data based on the 34th feature (X[:, 33]) and has a threshold

value of 13.8023. The Decision Tree algorithm continues to

recursively split the child nodes using the same process until

it reaches the maximum depth or a stopping criterion. By

selecting the feature and threshold values that minimize

impurity, the algorithm constructs a tree that can predict the

target variable by traversing the tree from the root to a leaf

node.

Cost complexity pruning is a technique commonly used

to avoid overfitting and enhance the generalization ability of

Decision Trees. This technique involves adding a penalty

term to the impurity reduction criterion, such as the Gini

index or entropy, to consider the tree’s complexity. The

complexity parameter, also called alpha, balances the model

complexity and goodness of fit to the training data. The tree

is initially grown to its maximum size and then pruned back

using a bottom-up approach. At each internal node, the

subtree is removed if the impurity reduction is not significant

or is overshadowed by the penalty term. The pruning process

continues for all internal nodes until the desired level of

pruning is achieved based on alpha. Cross-validation can be

used to select the optimal alpha value that strikes a balance

between model complexity and prediction accuracy.

In summary, cost complexity pruning is a powerful yet

straightforward approach that can improve Decision Trees’

generalization performance and mitigate overfitting risks.

The graph in Figure 1 illustrates the correlation between the

total impurity and the effective alpha parameter in the

Decision Tree classifier with the cost complexity pruning

technique. The graph demonstrates a decreasing pattern,

which indicates that the total impurity decreases as the

effective alpha increases. The effective alpha parameter acts

as a regularization parameter that balances the accuracy and

complexity of the model.

An increase in the effective alpha simplifies the model,

thereby decreasing the total impurity. The graph also depicts

an optimum point of the effective alpha parameter, beyond

which the model’s performance significantly decreases. This

optimum value signifies the highest accuracy point of the

Decision Tree model, which is neither too complex nor too

simple. Hence, this graph helps determine the optimal value

of the effective alpha parameter, which is essential to achieve

the best performance of the model on unseen data. Similarly,

the graph in Figure 2 displays a decreasing pattern, indicating

that the number of nodes decreases as the effective alpha

increases.

The effective alpha parameter controls the trade-off

between model complexity and accuracy, resulting in a

simpler model as the effective alpha increases. This graph is

utilized to determine the optimal effective alpha parameter

value, which is crucial for achieving the best performance of

the model on new data. By selecting the optimal value of

alpha, we can balance the model’s complexity and accuracy

and avoid overfitting or underfitting. The graph in Figure 3

illustrates the relationship between the effective alpha

parameter and the accuracy of the Decision Tree model on

the test data. This graph helps to determine the ideal effective

alpha value, which plays a crucial role in achieving the best

possible performance of the model on unseen data.

5. Experimental Outcome and Discussion

The accuracy of a machine learning model is a measure

of its ability to correctly predict the target variable based on

the input features. As mentioned earlier, our approach has

achieved 100% accuracy, indicating that it was able to

correctly classify all samples in the dataset. This can be

attributed to the Decision Tree’s ability to capture complex

relationships between the features and the target variable. In

Table I, the accuracy of various machine learning models is

compared, and our approach is shown to be the most optimal.

Also, Figure 4 depicts the confusion matrix of our Decision

Tree approach. The K Neighbors Classifier achieved a high

accuracy of 98.21%. This algorithm works by classifying a

sample based on the class labels of its k nearest neighbors in

the feature space. The high accuracy suggests that the

samples in the dataset are well separated in the feature space

and that the majority of the samples have similar features.

The Extra-Tree Classifier achieved a 96.7% accuracy by

building a large number of Decision Trees and selecting the

best split among a random subset of features at each node.

The high accuracy indicates that the features in the

dataset have strong predictive power, and the Decision Tree

ensemble can capture this information effectively.

Swati Chaudhari et al. / IJPTT, 14(1), 1-9, 2024

6

Fig. 4 Confusion Matrix of Effective Decision Tree (Our Approach)

Fig. 5 Confusion Matrix of Multi Layer Perceptron Classifier

Fig. 6 Confusion Matrix of Bernoulli naive Bayes classifier

The AdaBoost Classifier achieved a 94.73% accuracy.

The high accuracy suggests that the dataset contains a large

number of informative features that can be used to build a

strong classifier. The Ridge Classifier achieved a 91.81%

accuracy by fitting a linear model to the data using L2

regularization. The high accuracy suggests that the features

in the dataset have a linear relationship with the target

variable. The MLP Classifier achieved an 89.58% accuracy

by fitting a neural network model to the data. The relatively

lower accuracy suggests that the dataset may not contain

enough samples or features to train a complex neural network

model effectively.

Figure 5 introduces the confusion matrix of this

approach. The Passive Aggressive Classifier achieved an

86.24% accuracy by fitting a linear model to the data using

an online learning algorithm. The relatively lower accuracy

suggests that the dataset may contain noisy or irrelevant

features that are affecting the performance of the model. The

SGD Classifier achieved an 81.43% accuracy by fitting a

linear model to the data using stochastic gradient descent.

The lower accuracy suggests that the features in the dataset

may not have a strong linear relationship with the target

variable.

The Gaussian Naive Bayes Classifier achieved a 74.67%

accuracy by assuming that the features are independent and

have a Gaussian distribution. The lower accuracy suggests

that the assumption of independence may not hold for the

features in the dataset. The Complement Naive Bayes

Classifier achieved a 55.81% accuracy by assuming that the

complement of each feature has a multinomial distribution.

The relatively low accuracy suggests that the assumption of

the multinomial distribution may not hold for the features in

the dataset. The Bernoulli Naive Bayes Classifier achieved a

48.26% accuracy by assuming that the features are binary and

have a Bernoulli distribution.

The low accuracy suggests that the assumption of binary

features may not hold for the features in the dataset. Figure 6

depicts the confusion matrix of this approach. As part of our

work, we also analyzed the performance of each approach in

detecting traffic categories. Performance metrics of various

machine learning approaches on all network categories,

including encrypted networks, are presented in Figures 7, 8

and 9. The Decision Tree classifier performs exceptionally

well on all traffic categories with flawless precision, recall,

and f1-score. This is because Decision Trees are adept at

capturing non-linear connections between features and class

labels. Hence, it can divide the data into smaller segments and

make decisions based on those divisions, which ultimately

results in extremely accurate predictions.

Gaussian Naive Bayes works well on benign, brute-

force, brute-forcexml, and XMRIGCC Crypto Miner traffic

categories but has a relatively lower f1-score on the

background and probing categories. Gaussian Naive Bayes is

a probabilistic model that supposes the features are

autonomous of each other. Therefore, the model may not be

able to comprehend complex relationships between the

features, leading to lower performance in certain traffic

categories. The K Neighbors Classifier performs well in

detecting benign and Background traffic categories,

achieving precision and recall scores of around 0.98-0.99.

Swati Chaudhari et al. / IJPTT, 14(1), 1-9, 2024

7

Fig. 7 Performance metrics for the decision tree (Our Approach), K

Nearest Neighbors, Extra-Tree and Adaboost Classifier

Fig. 8 Performance metrics for the ridge, MLP and passive aggressive

classifier

Fig. 9 Performance metrics for the gaussian, Complement and

Bernoulli Naive Bayes classifiers

It also performs well in detecting Probing, Bruteforce,

and Bruteforce-XML traffic categories, achieving an f1-score

of 0.93-0.99. However, it has a low recall score in detecting

XMRIGCC Crypto Miner traffic, indicating that the classifier

is not very good at detecting this type of traffic.

Similarly, the Extra Tree Classifier performs well in

detecting all traffic categories, achieving precision and recall

scores of 1.00 in most cases. This indicates that the classifier

is very accurate in detecting different traffic categories. The

AdaBoost Classifier performs well in detecting benign and

Bruteforce traffic categories, achieving a precision score of

1.00. However, it performs poorly in detecting Probing,

Bruteforce-XML, and XMRIGCC Crypto Miner traffic

categories, with an f1-score of 0.00, which indicates that the

classifier is not able to classify these traffic categories

correctly.

The Multilayer Perceptron Classifier also performs well

in detecting benign traffic with a precision of 1.00 and an f1-

score of 0.84. However, it performs poorly in detecting

Probing and Bruteforce traffic categories with an f1-score of

0.00, which indicates that the classifier is not able to classify

these traffic categories correctly. It also has low recall in

detecting XMRIGCC Crypto Miner traffic. On the other

hand, Stochastic Gradient Descent (SGD) performs well in

the background traffic category, but it has a low f1-score in

all other traffic categories. The inadequate performance can

be attributed to the fact that SGD is a linear classifier and may

not be able to comprehend complex relationships between the

features, particularly for non-linearly separable data.

Swati Chaudhari et al. / IJPTT, 14(1), 1-9, 2024

8

Moreover, the Passive Aggressive Classifier works

relatively well on benign and background traffic categories

but has a low f1-score on all other traffic categories. This

classifier is a type of online learning algorithm which can

adapt quickly to new data. However, this classifier may not

be appropriate for this dataset since the dataset is not

continuously changing. Gaussian Naive Bayes works well on

benign, brute-force, brute-force-xml, and XMRIGCC Crypto

Miner traffic categories but has a relatively lower f1-score on

the background and probing categories. Gaussian Naive

Bayes is a probabilistic model that supposes the features are

autonomous of each other. Therefore, the model may not be

able to comprehend complex relationships between the

features, leading to lower performance in certain traffic

categories. Complement Naive Bayes performs poorly on all

traffic categories, with low precision, recall, and f1-score.

This is because the Complement Naive Bayes algorithm is

intended to work well with imbalanced datasets where the

number of samples in one class is significantly larger than in

the other classes. In this case, the dataset is not imbalanced,

and the algorithm is not suitable for this type of dataset.

Bernoulli Naive Bayes works well on brute-force-xml and

XMRIGCC Crypto Miner traffic categories, but it has a low

f1-score on other traffic categories, particularly benign and

background. Bernoulli Naive Bayes assumes binary features

and is typically used for text classification tasks. This

classifier may not be appropriate for this type of dataset since

the features are not binary.

6. Conclusion
We assessed and studied various machine learning

classifiers, including Decision Tree, Gaussian Naive Bayes,

Complement Naive Bayes, Bernoulli Naive Bayes,

Stochastic Gradient Descent, and Ridge Classifier, to detect

network attacks from the Hikari-2021 dataset. Our Decision

Tree classifier outperforms all other classifiers,

demonstrating flawless precision, recall, and f1-score on all

traffic categories. As such, we can conclude that the Decision

Tree classifier is one of the most superior classifiers for

detecting network attacks from the Hikari-2021 dataset,

owing to its ability to capture non-linear connections between

features and class labels and segment data to make decisions,

leading to highly accurate predictions. In future work, we can

consider studying and exploring more complex machine

learning models, like neural networks, to further enhance the

accuracy of our approach. Moreover, combining multiple

classifiers could improve overall system performance. We

could also evaluate the performance of these classifiers on

other datasets to assess their generalizability. Finally, we

could investigate the feasibility of implementing these

classifiers in real-time network monitoring systems for

identifying and mitigating network attacks in real-time.

References
[1] Andrey Ferriyan et al., “Generating Network Intrusion Detection Dataset Based on Real and Encrypted Synthetic Attack Traffic,” Applied

Sciences, vol. 11, no. 17, pp. 1-17, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] R. Sekar et al., “A High-Performance Network Intrusion Detection System,” Proceedings of the 6th ACM conference on Computer and

Communications Security, pp. 8-17, 1999. [CrossRef] [Google Scholar] [Publisher Link]

[3] Jimmy Shun, and Heidar A. Malki, “Network Intrusion Detection System Using Neural Networks,” 2008 Fourth International

Conference on Natural Computation, Jinan, China, pp. 242-246, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[4] Nasrin Sultana et al., “Survey on SDN Based Network Intrusion Detection System Using Machine Learning Approaches,” Peer-to-Peer

Networking and Applications, vol. 12, pp. 493-501, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[5] C. Sinclair, L. Pierce, and S. Matzner, “An Application of Machine Learning to Network Intrusion Detection,” Proceedings 15th Annual

Computer Security Applications Conference (ACSAC’99), Phoenix, AZ, USA, pp. 371-377, 1999. [CrossRef] [Google Scholar]

[Publisher Link]

[6] Kazi Abu Taher, Billal Mohammed Yasin Jisan, and Mahbubur Rahman, “Network Intrusion Detection Using Supervised Machine

Learning Technique with Feature Selection,” 2019 International Conference on Robotics, Electrical and Signal Processing Techniques

(ICREST), Dhaka, Bangladesh, pp. 643-646, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[7] Robin Sommer, and Vern Paxson, “Outside the Closed World: On Using Machine Learning for Network Intrusion Detection,” 2010

IEEE Symposium on Security and Privacy, Oakland, CA, USA, pp. 305-316, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[8] Abdulrahman Al-Hababi, and Sezer C. Tokgoz, “Man-in-the-Middle Attacks to Detect and Identify Services in Encrypted Network

Flows Using Machine Learning,” 2020 3rd International Conference on Advanced Communication Technologies and Networking

(CommNet), Marrakech, Morocco, pp. 1-5, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[9] Mauro Conti et al., “Analyzing Android Encrypted Network Traffic to Identify User Actions,” IEEE Transactions on Information

Forensics and Security, vol. 11, no. 1, pp. 114-125, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[10] Meng Shen et al., “Machine Learning-Powered Encrypted Network Traffic Analysis: A Comprehensive Survey,” IEEE Communications

Surveys & Tutorials, vol. 25, no. 1, pp. 791-824, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Maya Hilda Lestari Louk, and Bayu Adhi Tama, “Dual-IDS: A Bagging-Based Gradient Boosting Decision Tree Model for Network

Anomaly Intrusion Detection System,” Expert Systems with Applications, vol. 213, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.3390/app11177868
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Generating+Network+Intrusion+Detection+Dataset+Based+on+Real+and+Encrypted+Synthetic+Attack+Traffic&btnG=
https://www.mdpi.com/2076-3417/11/17/7868
https://doi.org/10.1145/319709.319712
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+high-performance+network+intrusion+detection+system&btnG=
https://dl.acm.org/doi/10.1145/319709.319712
https://doi.org/10.1109/ICNC.2008.900
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Network+Intrusion+Detection+System+Using+Neural+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/4667434
https://doi.org/10.1007/s12083-017-0630-0
https://scholar.google.com/scholar?q=Survey+on+SDN+based+network+intrusion+detection+system+using+machine+learning+approaches&hl=en&as_sdt=0,5
https://link.springer.com/article/10.1007/s12083-017-0630-0
https://doi.org/10.1109/CSAC.1999.816048
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+application+of+machine+learning+to+network+intrusion+detection&btnG=
https://ieeexplore.ieee.org/abstract/document/816048
https://doi.org/10.1109/ICREST.2019.8644161
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Network+Intrusion+Detection+using+Supervised+Machine+Learning+Technique+with+Feature+Selection&btnG=
https://ieeexplore.ieee.org/abstract/document/8644161
https://doi.org/10.1109/SP.2010.25
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Outside+the+Closed+World%3A+On+Using+Machine+Learning+for+Network+Intrusion+Detection&btnG=
https://ieeexplore.ieee.org/abstract/document/5504793
https://doi.org/10.1109/CommNet49926.2020.9199617
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Man-in-the-Middle+Attacks+to+Detect+and+Identify+Services+in+Encrypted+Network+Flows+using+Machine+Learning&btnG=
https://ieeexplore.ieee.org/abstract/document/9199617
https://doi.org/10.1109/TIFS.2015.2478741
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analyzing+Android+Encrypted+Network+Traffic+to+Identify+User+Actions&btnG=
https://ieeexplore.ieee.org/abstract/document/7265055
https://doi.org/10.1109/COMST.2022.3208196
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning-Powered+Encrypted+Network+Traffic+Analysis%3A+A+Comprehensive+Survey&btnG=
https://ieeexplore.ieee.org/abstract/document/9896143
https://doi.org/10.1016/j.eswa.2022.119030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dual-IDS%3A+A+bagging-based+gradient+boosting+Decision+Tree+model+for+network+anomaly+intrusion+detection+system&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417422020486

Swati Chaudhari et al. / IJPTT, 14(1), 1-9, 2024

9

[12] Rui Fernandes, and Nuno Lopes, “Network Intrusion Detection Packet Classification with the HIKARI-2021 Dataset: A Study on ML

Algorithms,” 2022 10th International Symposium on Digital Forensics and Security (ISDFS), Istanbul, Turkey, pp. 1-5, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[13] Salvatore Stolfo et al., KDD Cup 1999 Data, UCI Machine Learning Repository, 1999. [CrossRef] [Publisher Link]

[14] Nour Moustafa, and Jill Slay, “UNSW-NB15: A Comprehensive Data Set for Network Intrusion Detection Systems (UNSW-NB15

Network Data Set),” 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT, Australia, pp. 1-6,

2015. [CrossRef] [Google Scholar] [Publisher Link]

[15] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, “Toward Generating a New Intrusion Detection Dataset and Intrusion

Traffic Characterization,” Proceedings of the 4th International Conference on Information Systems Security and Privacy ICISSP, Funchal,

Madeira, Portugal, vol. 1, pp. 108-116, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[16] S.R. Safavian, and D. Landgrebe, “A Survey of Decision Tree Classifier Methodology,” IEEE Transactions on Systems, Man, and

Cybernetics, vol. 21, no. 3, pp. 660-674, 1991. [CrossRef] [Google Scholar] [Publisher Link]

[17] Philip H. Swain, and Hans Hauska, “The Decision Tree Classifier: Design and Potential,” IEEE Transactions on Geoscience Electronics,

vol. 15, no. 3, pp. 142-147, 1977. [CrossRef] [Google Scholar] [Publisher Link]

[18] Zeeshan Ahmad et al., “Network Intrusion Detection System: A Systematic Study of Machine Learning and Deep Learning Approaches,”

Transactions on Emerging Telecommunications Technologies, vol. 32, no. 1, pp. 1-29, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

https://doi.org/10.1109/ISDFS55398.2022.9800807
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Network+Intrusion+Detection+Packet+Classification+with+the+HIKARI-2021+Dataset%3A+a+study+on+ML+Algorithms&btnG=
https://ieeexplore.ieee.org/abstract/document/9800807
https://doi.org/10.24432/C51C7N
https://archive.ics.uci.edu/dataset/130/kdd+cup+1999+data
https://doi.org/10.1109/MilCIS.2015.7348942
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=UNSW-NB15%3A+a+comprehensive+data+set+for+network+intrusion+detection+systems+%28UNSW-NB15+network+data+set%29&btnG=
https://ieeexplore.ieee.org/abstract/document/7348942
https://doi.org/10.5220/0006639801080116
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Toward+Generating+a+New+Intrusion+Detection+Dataset+and+Intrusion+Traffic+Characterization&btnG=
https://www.scitepress.org/PublicationsDetail.aspx?ID=K3WXGO8/3O4=&t=1
https://doi.org/10.1109/21.97458
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+of+Decision+Tree+classifier+methodology&btnG=
https://ieeexplore.ieee.org/abstract/document/97458/authors#authors
https://doi.org/10.1109/TGE.1977.6498972
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Decision+Tree+classifier%3A+Design+and+potential&btnG=
https://ieeexplore.ieee.org/abstract/document/6498972
https://doi.org/10.1002/ett.4150
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Network+intrusion+detection+system%3A+A+systematic+study+of+machine+learning+and+deep+learning+approaches&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1002/ett.4150
https://onlinelibrary.wiley.com/doi/full/10.1002/ett.4150

