
International Journal of P2P Network Trends and Technology ( IJPTT )  – Volume 7 Issue 6 Nov to Dec 2017 

 

ISSN: 2249 – 2615                                 http://www.ijpttjournal.org  Page 19 

Classification of Touch Spam in Mobile Ad 

Networks using Bi-Partite Graph 
                                    

M. Sree Vani      
Dept of CSE, MGIT , Hyderabad-500075      

 

Abstract 
A touch user interface (TUI) is a computer-

pointing technology based upon the sense of touch 

(haptics). Touch-spam is a type of fraud that occurs 

over TUI gadgets ex. Smartphones, tablets, phablets, 

touch laptops etc. It actually happens in TUI 

applications when a person, automated script, 

computer program or robotic action imitates a 

legitimate user of a TUI application touching on an 

advertisement (ad), for the purpose of generating a 

charge per touch without having actual interest in the 

target of the ad’s popup. Touch-spam is becoming an 

issue due to the advertising networks being a key 

beneficiary of this spam. In present days, smartphone 

gaming applications (apps) are playing a vital role to 

attract mobile-advertisements (ads) since their pocket 

portability and other versatile features. Popular apps 

are able to read the user personalized data to process 

user interests helping to generate customized ads. 

Touch-spam in smart phone apps is a fraudulent or 

invalid tap or touch on online ads, where the user has 

no actual interest in the advertiser’s site. It requires 

a user touch on online ads that pop-up dynamically 

in smartphone gaming apps. It all need  the user to 

tap the screen close to where the ad is displayed 

.While the ad networks continue taking active 

measures to block click-spam today, the touch-spam 

still creeping under the TUI. It is being used by 

spammers to misappropriate the advertising revenue. 

The presence of touch-spam is largely unknownThen 

we propose a node-tag propagation algorithm on 

click-through logs to identify spam Apps in 

Smartphone-game Apps. We validate our 

methodology using click/touch-log data from major 

ad network. Our findings highlight the extremity of 

the spam in mobile advertising. 

 

Keywords : spam, mobile apps, click spam, bi-

partite graph. 

I. INTRODUCTION 

By vast usage of mobiles, a specialized 

third-party applications (“apps”) are playing big role 

for growing of  Smartphone and tablet markets in 

leaps and bounds. Whether on the iPhone or  

 

Android platforms, apps often come in two 

flavors: a free version, with embedded advertising, 

and a pay version without. Both models have been 

successful in the marketplace. Mobile advertisements 

within the apps are only source of revenue for several 

mobile app publishers. Maximum of the apps in the 

major mobile app stores show ads. To embed ads in 

an app, the app developer typically registers with a 

third-party mobile ad network such as AdMob [2], 

iAd [3], Microsoft Mobile Advertising [4] etc. The ad 

net- works supply the developer with an ad control 

(i.e. library with some visual elements embedded 

within). The developer includes this ad control in his 

app, and assigns it some screen real estate. When the 

app runs, the ad control is loaded, and it fetches ads 

from the ad network and displays it to the user. 

Different ad networks use different signals to serve 

relevant ads. One of the main signals that mobile ad 

networks use today is the app metadata . As part of 

the registration process, most ad networks ask the 

developer to provide metadata information about the 

app (for e.g. category of the app, link to the app store 

description etc.). This allows the ad network to serve 

ads related to the app metadata. Ad networks also 

receive dynamic signals sent by the ad control every 

time it fetches a new ad. Depending on the privacy 

policies and the security architecture of the platform, 

these signals can include the location, user identity, 

etc. Note that unlike JavaScript embedded in the 

browsers, the ad controls are integral parts of the 

application, and have access to the all the APIs 

provided by the platform. 

A. Background on mobile advertising 

A typical mobile advertising system has five 

participants: mobile clients, advertisers, ad servers, 

ad exchanges and ad networks as Figure 1 shows. A 

mobile application includes an ad control module 

(e.g., AdControl for Windows Phones, AdMob for 

Android) which notifies the associated ad server any 

time an ad slot becomes available on the client’s 

device. The ad server decides how to monetize the ad 

slot by displaying an ad. Ads are collected from an ad 

exchange. Ad exchanges are neutral parties that 

aggregate ads from different third party ad networks 

and hold an auction every time a client’s ad slot 

becomes available. The ad networks participating in 

the exchange estimate their expected revenue from 

showing an ad in such an ad slot and place a bid on 

behalf of their customers (i.e., the advertisers). An ad 

network attempts to maximize its revenue by 

choosing ads that are most appropriate given the 

context of the user, in order to maximize the 

possibility of the user clicking on the ads. The ad 



International Journal of P2P Network Trends and Technology ( IJPTT )  – Volume 7 Issue 6 Nov to Dec 2017 

 

ISSN: 2249 – 2615                                 http://www.ijpttjournal.org  Page 20 

network receives information about the user such as 

his profile, context, and device type from the ad 

server, through the ad exchange. Ad exchange runs 

the auction and chooses the winner with the highest 

bid.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Architecture of a typical mobile ad 

system. 

 

Advertisers register with their ad networks 

by submitting an ad campaign. A campaign typically 

specifies an advertising budget and a target number 

of impressions/clicks within a certain deadline (e.g., 

50,000 impressions delivered in 2 weeks). 

 

They can also specify a maximum cap on 

how many times a single client can see a specific ad 

and how to distribute ads over time (e.g., 150 

impressions per hour). The ad server is responsible 

for tracking which ads are displayed and clicked, and 

thus determining how much money an advertiser 

owes. The revenue of an ad slot can be measured in 

several ways, most often by views (Cost Per 

Impression) or click-through (Cost Per Click), the 

former being most common in mobile systems. The 

ad server receives a premium on the sale of each ad 

slot, part of which is passed to the developer of the 

app where the ad was displayed. 

The rest of this paper is ordered as follows. In 

Section 2, we review approaches for click spam 

detection in previous work. In Section 3, we 

introduce our methodology for prediction of spam in 

Mobile Apps. Section 4 presents our novel Graph 

based label propagation algorithm. Section 5 

describes our experiment setup and shows 

experimental results. Finally, In section 6, we 

presented our conclusions and future work. 

 

II. RELATED WORK 

Existing works on ad fraud mainly focus on 

the click-spam behaviors, characterizing the features 

of click-spam, either targeting specific attacks [5, 6, 

16, 18], or taking a broader view [7]. Some work has 

examined other elements of the click-spam 

ecosystem: the quality of purchased traffic [19, 20], 

and the spam profit model [12, 13]. Very little work 

exists in exploring clickspam in mobile apps. From 

the controlled experiment, authors in [7] observed 

that around one third of the mobile ad clicks may 

constitute click-spam. A contemporaneous paper [9] 

claimed that mobile malware is nowhere in the wild 

which performs spam in advertising. DECAF focuses 

on detecting violations to ad network terms and 

conditions, and even before potentially fraudulent 

clicks have been generated. With regard to detection, 

most existing works focus on bot-driven click spam, 

either by analyzing search engine query logs to 

identify outliers in query distributions characterizing 

networking traffic to infer coalitions made by a group 

of bot-driven fraudsters [14, 15], or authenticating 

normal user clicks to filter out bot-driven clicks [10, 

11]. A recent work, Viceroi [8], designed a more 

general framework that is possible to detect not only 

bot-driven spam, but also some non-bot driven ones 

(like search-hijacking).To the best of our knowledge, 

ours is the start-up work to detect touch spam in 

mobile apps. 

 

III. METHODOLOGY 

By observing the above facts, we propose a 

node-tag propagation algorithm on click-through 

logs. Initially, a few game-apps are selected as seed 

set and tagged as spam or non-spam. Then their tags 

are propagated on the bipartite graph and other 

possible spam/non-spam game-apps are identified. 

Our input data set contains three items. The first item 

is a set of tagged game-apps (spam or non-spam), 

second item is a set of untagged game-apps and last 

item is a set of constraints between game-apps and 

the ad-controls in the log. The goal is to find spam 

game-apps which are misplaced ad-controls from the 

unlabeled data. 

A. Advertiser web server log contains click-through 

data C and bipartite graph G.  

The click data consists of triples <a, g, fag>, where a 

is a ad-control clicked by gamer or player, g is 

publisher website which serves an ad to user by 

fetching from ad-network and fag is the number of 

times that ad-control ad is clicked when user is 

playing game g. Define AD = {a | a appears in C} 

and GA = {g | g appears in C}.  

 

 

 

Ad slot 

Ad slot Ads,$ 

App  

Ad module 

 

 

Ad server 

Ad exchange 

Ad network Ad network 

Advertiser Advertiser 

Ads,$ 

Auction 

inventory 

Num of 

impressions,deadline 



International Journal of P2P Network Trends and Technology ( IJPTT )  – Volume 7 Issue 6 Nov to Dec 2017 

 

ISSN: 2249 – 2615                                 http://www.ijpttjournal.org  Page 21 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 :Bipartite Graph G 

 

 

Click-through log C has an equal representation– a 

click-through bipartite graph G = (AD, GA, E). There 

are two different types of nodes, ad-controls and GAs 

in G. For every record <a, g, fag> in C, there is an 

edge (a, g) ∊ E with weight fag.  Each a/g is assigned 

with a probability pa/pg which denotes how likely 

this a/g is to be a spam game app which is misplaced 

ad-control in game or in other words, the spamicity 

of a/g. The construction of click-through bipartite 

graph can be on page-level or site-level. In the site-

level, g is replaced by its site but not the URL of 

itself. For example, <”Nokia”, 

http://product.pcpop.com/Mobile 

/00283_1.html, 100> is replaced by <”Nokia”, 

http://product.pcpop.com/, 100>.  

 

B. Tagged Seed GA set T. 

T contains all of the game-apps in C (G) that 

are manually tagged as spam or non-spam. Formally, 

T = {g | g is tagged as a spam game-app or non-spam 

game-app}. We will elaborate the construction details 

of T in Section 5.2.  

 

C. GA Result Set GU  

                 Set GU contain all the <g, pg> and <a, pa> 

tuples, respectively. After our algorithm ends, each 

GA g or ad-control a in C (or G) will be assigned 

with a probability pg/ pa, which denotes the 

probability that this GA or ad-control is a spam 

game-app which are misplaced ad-control. More 

formally, GU = {<g, pg > | pg is the spam score for 

g-app}. Given G = (AD, GA, E) and T∊ GA, the aim 

of the spam game apps mining problem is to get the 

result set GU , which contain all of the possible spam 

game apps which are misplaced ad-control in G. 

 

 

 

 

IV. NODE-TAG PREDICTION ALGORITHM 

A.  Design of Algorithm  

 In our work, we propose a node-tagl 

propagation (N-TP) algorithm to get solution for the 

problem that is defined in the above section. More 

pointedly, for each game-app g, we could calculate 

the probability pg that g-app is a spam game-app by 

incorporating all of the node information of its 

neighbors. We elaborate this procedure more 

formally as follows. 

For a/g, we use la/lg to denote its tag, which is S 

for spam and N for non-spam. Note that P(lg=N) = 1-

P(lg=S). Thus every GA g in tagged set T would have 

P(lg=S)=1 or P(lg=S)=0 initially and every GA g in 

the set GA- T would have P(lg=S)=0.Then we have 

 

 

 
Where 

 

 
 

 

is the transition probability from GA g to ad-control 

a.  

Similarly, for each ad-control AD a in GA\T, the 

probability  is computed as 

 
 

Where 

 

 
 

is the transition probability from ad-control a to GA 

g. Note that both and are not limited to the 

above form but arbitrary. The only requirement for 

them is they should have a probability interpretation, 

which means  and 

. Using Equation (1) and (3), 

we can get P(lg=S)  and P(la=S)  recursively for all of 

the GAs in the  bipartite graph. We can have a brief 

representation of this iterative process. Suppose that 

there are |AD| ad-controls: a1，a2…a|AD| and |GA| 

Game-apps: g1, g2,…g|GA|. Define vectors: 

PAD=(P(la1=S), P(la2=S)…P(l a|AD|=S))T, 

PGA=(P(lg1=S), P(lg2=S)…P(lg|GA| =S))T, and the 

transition probability matrixes: Mag=（  

A1

11 

G5 

G4 

G3

A 

G2 

G1 

Ad-controls Game-Apps 

A2

1 

A3

11 

A4

1 



International Journal of P2P Network Trends and Technology ( IJPTT )  – Volume 7 Issue 6 Nov to Dec 2017 

 

ISSN: 2249 – 2615                                 http://www.ijpttjournal.org  Page 22 

）|AD|x|GA|, and Mga=（  ）|GA|x|AD .Then in 

the ith iteration, we have PiAD=Mag Pi-1 GA  , Pi 

GA= MgaPi AD 

 

We notice that in every round of iteration, all of the 

GAs in seed set T should be re-assigned their initial 

tags. In this way, the algorithm converges. We will 

demonstrate the convergence in section 4.4. The 

outline of the Graph based Node-tag Propagation 

algorithm is shown in Figure 3. 

 

Input：tagged seed set T, click-through log data 

C(G) 

Output：P(lg=S) and P(la=S) for all GAs and ad-

controls in G 

Begin 

Do 

for (g L, set P(lg=S)=1 or 0 according to 

their tags by human assertors. ) 

 

for (all a AD) do 

 
end for 

for (all g GA\T)do 

 
 

end for 

until convergence 

Output P(lg=S) for every GameApp g in GA and 

P(la=S) for every ad-control a in AD 

 

End 

Figure 3:The Graph based node-tag propagation 

algorithm 

B.  N-TP Algorithm Convergence 

As we know that Mag and Mga are right 

stochastic matrixes means each of whose rows 

consists of positive real numbers, with each row 

summing to 1. Then consider Mgg=MgaMag. For each 

element mij in Mgg, we have in 

Mgg, where  and are elements Mga and Mag, 

respectively. Thus we have  

 

 

 

 

 

 
That means  Mgg is also a right stochastic matrix. 

Now,  we are only interested in PGA, the iteration 

process can be rewritten as PiGA= MggPi-1GA= 

MgaMag P i-1GA, where i denotes the 

iterations. Suppose that there are |T| seed GAs in T, 

|C| 1-degree nodes and thus r = |GA|-|T|-|C| remaining 

GAs in C. More pointedly, let the probability vector 

PGA=（PT PL） where PT are the top |T|+|C| rows 

of PGA(the labeled data and the pseudo labeled data) 

and PT are the remaining r rows of PGA(the 

unlabeled data). We split Mgg after the (|T|+|C|)th 

row and the (|T|+|C|)th column into 4sub-matrixes 

 

 
 

.Note that PT never really changes. It can be shown 

that in our algorithm,  

  which lead to   

 

Zhu and Ghahramani [27] proved that PL converges 

to (I-Mrr)-1  . if Mgg is a right 

stochastic matrix. Thus the initial value of PT is 

inconsequential. Using the same approach, we could 

prove that PAD also converges. 

 

V. EXPERIMENTS 

The aim of our experiments is to examine 

how effective our algorithm is in predicting spam 

Game Apps. Given a seed set T, the N-TP algorithm 

returns a list of game apps that are arranged 

according to their probability of being spam. Seed 

game apps are not included in the list. We also have a 

list of ad-controls that are arranged according to their 

probability of being used as a spam-oriented ad-

control.  

 

A. Datasets 

We collected our data sets from few top 

most ad networks by sign-up as an advertiser. We 

gathered  all web requests made to our server and 

formed a log. The logs used in this study are standard 

Apache web server logs that contains the date and 

time of access ,user’s IP address, , URL accessed (of 

a page on our webserver) along with any GET 

parameters, User-Agent value sent for that 

request,the HTTP Referer value and  a cookie value 



International Journal of P2P Network Trends and Technology ( IJPTT )  – Volume 7 Issue 6 Nov to Dec 2017 

 

ISSN: 2249 – 2615                                 http://www.ijpttjournal.org  Page 23 

we set the first time we see a user to identify repeat 

visits from the same user. Our datasets also consist of 

all selected game apps crawled from the Apple iOS 

App Store in 2012. We collected 13,267 top free 

game apps from App Store.  

 

B. Bipartite Graph Construction  

We pruned the entire ad -game apps tuples 

with just one click/touch on any day in the log 

because they may contain possible privacy 

information and noise. Then, this click-through log 

consisted of 24,435 unique ad-controls, with 34,708 

unique game apps in 1,055 sites. To construct 

bipartite graph , we used Altogether, 50,660 ad-game 

apps tuples. The maximal component of the graph 

contains 25.0% unique ad-controls, 29.0% game apps 

and 44.2% ad-game apps pairs.  

From our datasets, we computed metadata for apps, 

developers, and users who post reviews .We divide 

the whole data sets into two parts as training dataset 

and test dataset. We then went for manual labeling of 

training datasets. To label apps as spam or non spam, 

we invited some volunteers who had experience with 

mobile game playing to participate. After labeling 

process, we have 81 spam posts (17%) and 401 non 

spam posts (83 %.). 

 

C. Results 

We would like to detect as many spam apps 

as possible while avoiding misclassifying non-spam 

ones. We conduct various experiments with our 

dataset using our Label propagation algorithm. We 

compared our algorithm against with pagerank and 

Trust algorithm. The experimental results shown in 

the Figure 4. 

 

 
Figure 4 :AUC Values for Different Spam Detection 

Algorithms. 

 

From the above Figures, we can observe that  

AUC values of the five algorithms are greater than 

0.78, which suggests that they are effective in 

detecting Web spam. page rank performs the worst 

because spam sites can boost their page rank scores 

using tricks such as the link-farm. TRUST works 

better than PR, which is consistent with previous 

research (10). The AUC of N-TP is 0.870, which is 

much better than both PR. And TRUST. This 

illustrates our algorithm gives much better 

performance in detecting web spam sites. To evaluate 

our algorithm, we conducted experiment on seed 

selection .We randomly split our spam sites into 21 

subsets (each with 100 seed sites and then add them 

gradually into seed set. The experiment results are 

summarized in Figure 5. It can be seen that all of our 

algorithms are very good performers. They can 

achieve a relatively high AUC value after only 400 

sites are added into the seed sets. We also notice that 

N-TP performs consistently better than PR and 

TRUST. 

 
Figure 5 :Algorithm Performance with Different Seed 

Sets 

VI. CONCLUSION 

In our work, we have proposed a Graph 

based Node-Tagged propagation algorithm to predict 

spam in Mobile game apps. This Algorithm 

constructed bipartite graph G from Advertiser web 

server log data and generates Labeled Seed set T. 

Then finally extracts the resultant set GU, which 

contains all of the possible spam game apps which 

are misplaced ad-control in G. Experiment results 

indicates that our algorithm is effective and efficient 

for predicting spam in mobile game Apps. In future, 

we try to combine our algorithm with some current 

anti-spam techniques results in a much better 

performance. 

REFERENCE 
[1] M.Najork. Web spam detection. In L. Liu and M. T.• Ozsu, 

editors, Encyclopedia of Database Systems, pages 

3520{3523. Springer US, 2009. 

[2] Googleadmob. ttp://www.google.com/ads/admob/. 

[3] iadappnetwork. 

http://developer.apple.com/support/appstore/iad-app-

network/. 

[4] Microsoft advertising. http://advertising.microsoft.com/en-

us/splitter. 

[5] S.Alrwais, A. Gerber,  O. Spatscheck,M. Gupta, and E. 

Osterweil. Dissecting ghost clicks: Ad fraud via misdirected 

human clicks.  ACSAC, 2012. 

[6] T.Blizard and N. Livic. Click-fraud monetizing malware: A 

survey and case study. 2012. 

[7] P.Chia, Y. Yamamoto, and N. Asokan. Is this app safe? a 

large scale study on application permissions and risk signals. 

In WWW, 2012. 



International Journal of P2P Network Trends and Technology ( IJPTT )  – Volume 7 Issue 6 Nov to Dec 2017 

 

ISSN: 2249 – 2615                                 http://www.ijpttjournal.org  Page 24 

[8] V.Dave, S. Guha, and Y. Zhang. Measuring and 

fingerprinting click-spam in ad networks. In ACM 

SIGCOMM, 2012. 

[9] C.Cadar D. Dunbar and D. Engler. Klee: In USENIX OSDI, 

2008. 

[10] P.Gilbert, B. Chun, J. Jung. Vision:automated security 

validation of mobile apps at app markets. In MCS, 2011. 

[11] H.Haddadi. Fighting online click-fraud using bluff ads. ACM 

Computer Communication Review, 40(2):21–25, 2010.14 

[12] C.Hu and I. Neamtiu. Automating gui testing for android 

applications. In AST, 2011. 

[13] A.MacHiry, R. Tahiliani, and M. Naik. Dynodroid: An input 

generation system for android apps. In FSE, 2013. 

[14] A.Mesbah and A. van Deursen. Invariant-based automatic 

testing of ajax user interfaces. In ICSE, 2009. 

[15] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. 

Crawling ajax-based web applications through dynamic 

analysis of user interface state changes. ACM Transactions 

on the Web, 6(1):1–30, 2012. 

[16] A.Metwally, D. Agrawal, and A. El Abbadi. 

Detectives:Detecting coalition hit inflation attacks in 

advertising networks streams. In WWW, 2007. 

[17] A.Metwally, F. Emekci, D. Agrawal, and A. El 

Abbadi.Sleuth: Single-publisher attack detectIon using 

correlation hunting. In PVLDB, 2008. 

[18] B.Miller, P. Pearce, C. Grier, C. Kreibich, and V. Paxson. 

What’s clicking what? techniques and innovations of today’s 

clickbots. In DIMVA, 2011. 

[19] L.Ravindranath, J. Padhye, S. Agarwal, R. Mahajan,I. 

Appinsight: mobileapp performance monitoring inthe wild. 

In USENIX OSDI, 2012. 

[20] W.Yang, M. Prasad, and T. Xie. A grey-box approach for 

automated gui-model generation of mobile applications. In 

FASE, 2013. 

 

 

 


