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Abstract 

               Smart phone Apps plays a vital role to attract 

mobile-Advertising. Popular apps can generate millions 

of dollars in profit and collect valuable personal user 

information. spam, i.e., fraudulent or invalid tap or 

click on online ads, where the user has no actual 

interest in the advertiser’s site, results in advertising 

revenue being misappropriated by spammers. It 

requires a user touch or click on control ads came from 

Smartphone-game Apps. It all need  the user to tap the 

screen close to where the ad is displayed .While ad 

networks take active measures to block click-spam 

today,  but not in mobile advertising. The presence of 

spam in mobile advertising is largely unknown. In this 

paper, we take the first systematic look at spam in 

mobile advertising. We propose a methodology to 

identify spam Apps in Smartphone-game Apps. We 

validate our methodology using data from major ad 

networks. Our findings highlight the severity of the 

spam in mobile advertising. 
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I. INTRODUCTION 

Mobile advertisements within the apps are 

only source of revenue for several mobile app 

publishers. Maximum of the apps in the major mobile 

app stores show ads [1]. To embed ads in an app, the 

app developer typically registers with a third-party 

mobile ad network such as AdMob [2], iAd [3], 

Microsoft Mobile Advertising [4] etc. The ad net- 

works supply the developer with an ad control (i.e. 

library with some visual elements embedded within). 

The developer includes this ad control in his app, and 

assigns it some screen real estate. When the app runs, 

the ad control is loaded, and it fetches ads from the ad 

network and displays it to the user. Different ad 

networks use different signals to serve relevant ads. 

One of the main signals that mobile ad networks use 

today is the app metadata [24]. As part of the 

registration process, most ad networks ask the 

developer to provide metadata information about the 

app (for e.g. category of the app, link to the app store 

description etc.). This allows the ad network to serve 

ads related to the app metadata. Ad networks also 

receive dynamic signals sent by the ad control every 

time it fetches a new ad. Depending on the privacy 

policies and the security architecture of the platform, 

these signals can include the location, user identity, etc. 

Note that unlike JavaScript embedded in the browsers, 

the ad controls are integral parts of the application, and 

have access to the all the APIs provided by the 

platform. 

A. Background on Mobile Advertising 

A typical mobile advertising system has five 

participants: mobile clients, advertisers, ad servers, ad 

exchanges and ad networks as Figure 2 shows. A 

mobile application includes an ad control module (e.g., 

AdControl for Windows Phones, AdMob for Android) 

which notifies the associated ad server any time an ad 

slot becomes available on the client’s device. The ad 

server decides how to monetize the ad slot by 

displaying an ad. Ads are collected from an ad 

exchange. Ad exchanges are neutral parties that 

aggregate ads from different third party ad networks 

and hold an auction every time a client’s ad slot 

becomes available. The ad networks participating in the 

exchange estimate their expected revenue from showing 

an ad in such an ad slot and place a bid on behalf of 

their customers (i.e., the advertisers). An ad network 

attempts to maximize its revenue by choosing ads that 

are most appropriate given the context of the user, in 

order to maximize the possibility of the user clicking on 

the ads. The ad network receives information about the 

user such as his profile, context, and device type from 

the ad server, through the ad exchange. Ad exchange 

runs the auction and chooses the winner with the 

highest bid. Advertisers register with their ad networks 

by submitting an ad campaign. A campaign typically 

specifies an advertising budget and a target number of 

impressions/clicks within a certain deadline (e.g., 

50,000 impressions delivered in 2 weeks). 
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Figure 1. Architecture of a Typical Mobile ad System. 

 

They can also specify a maximum cap on how 

many times a single client can see a specific ad and 

how to distribute ads over time (e.g., 150 impressions 

per hour). The ad server is responsible for tracking 

which ads are displayed and clicked, and thus 

determining how much money an advertiser owes. The 

revenue of an ad slot can be measured in several ways, 

most often by views (Cost Per Impression) or click-

through (Cost Per Click), the former being most 

common in mobile systems. The ad server receives a 

premium on the sale of each ad slot, part of which is 

passed to the developer of the app where the ad was 

displayed. 

B. Background and Motivation for Spam in Mobile 

Advertising 

A mobile developer accidentally (or 

intentionally) places the in-app advertising control close 

to where the user must tap, or drag on usage of mobile. 

Given the tiny screen real-estate, the user is prone to 

mistapping. When he does so, the browser navigates to 

the ad-click URL. The user may realize his error and 

switch back to the game. The browser, which in the 

mean time has already begun fetching the ad landing-

page, aborts the attempt. As a result, the user will 

appear to have spent very little time on the advertiser’s 

page. We saw exactly this behavior on our mobile ads 

—95% of users spent less than a second as mentioned 

earlier. 

 

The core issue here is the advertiser being 

charged despite the user not spending any time on the 

landing page. It is hard for an ad network to know how 

long the user spent on the advertiser’s site. If it relied 

on the advertiser to get this information, the advertiser 

could easily lie to get a discount. Solving this without 

modifying the browser, and without hurting the user 

experience is a non-trivial problem. One mitigating 

approach would be to audit apps that trick users into 

mistapping on the ad. Doing so would likely spark an 

arms race for apps intentionally exploiting this loop-

hole, but would at least protect advertisers from apps 

accidentally triggering this. Unfortunately, ad networks 

are making it harder for advertisers and independent 

third-parties to identify bad apps. 

Having identified the spam problem, in this paper we 

propose a new framework for spam detection in mobile 

Apps. We propose a novel set of features particular to 

the mobile user gaming experience based features. We 

validate our methodology using data from major ad 

networks. We demonstrate the effectiveness of our 

approach via experiments on a datasets consist of all 

selected game apps crawled from the Apple iOS App 

Store in 2012. We conduct various experiments with 

our datasets. We would like to detect as many spam 

posts as possible while avoiding misclassifying non-

spam posts as spam ones. Our approach gives us the 

best performance in terms of precision and recall, F-1 

measure. 

 

The rest of the paper is organized as follows. 

In Section 2, we review approaches for click spam 

detection in previous work. In Section 3, we introduce 

our methodology for spam detection in Mobile Apps. 

Section 4 presents novel set of features used in the 

classifier. Section 5 describes our experiment setup and 

shows experimental results. Finally, our conclusions 

and future directions are presented in Section 6. 

II. RELATED WORK 

Existing works on ad fraud mainly focus on 

the click-spam behaviors, characterizing the features of 

click-spam, either targeting specific attacks [5, 6, 16, 

18], or taking a broader view [7]. Some work has 

examined other elements of the click-spam ecosystem: 

the quality of purchased traffic [19, 20], and the spam 

profit model [12, 13]. Very little work exists in 

exploring clickspam in mobile apps. From the 

controlled experiment, authors in [7] observed that 

around one third of the mobile ad clicks may constitute 

click-spam. A contemporaneous paper [9] claimed that 

they are not aware of any mobile malware in the wild 

that performs advertising click fraud. DECAF focuses 

on detecting violations to ad network terms and 

conditions, and even before potentially fraudulent 

clicks has been generated. With regard to detection, 

most existing works focus on bot-driven click spam, 

either by analyzing search engine query logs to identify 

outliers in query distributions [52], characterizing 

networking traffic to infer coalitions made by a group 

of bot-driven fraudsters [14, 15], or authenticating 

normal user clicks to filter out bot-driven clicks [10, 11, 

49]. A recent work, Viceroi [8], designed a more 

general framework that is possible to detect not only 
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bot-driven spam, but also some non-bot driven ones 

(like search-hijacking).To the best of our knowledge, 

ours is the first work to detect touch spam in mobile 

apps. 

 

III. METHODOLOGY 

This section presents an overview of our 

approach for spam detection in mobile Apps. We 

propose a simple latent class model to capture the 

relationship among the user gaming experience, app, 

user, and developer. Figure 2 shows the structure of the 

graphical model. For each entity of interest, we assign it 

a feature node and a latent node which represents the 

latent class. The latent class model assumes that the 

feature is generated from the unobserved class, and is 

independent of other nodes given the class. 

Furthermore, we assume that the developer only 

directly affects the app.  

 

All latent class variables in this model are 

chosen to be binary. Ia indicates good or bad apps, Id 

indicates good or bad developers, Iu indicates normal or 

malicious users, and Ie indicates truthful or spam 

experiences. Table 1 summarizes the features and the 

conditional probability model at each node.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 2: Latent Class Model for user Experience, 

User, App, and Developer. 

 

 

 

 

 

Table 1: Features and CPD 

 

IV. FEATURES 

To build classifiers, we extract numerous 

features from the App page. We first use an App 

features. Then we extract App Developer features from 

App. Then we do deeper analysis to extract more 

mobile ad-control location based features including 

ones using external sources of information. 

A. App Features 

Developers of spam apps (malicious 

developers) are primarily interested in gaining 

monetary profit or leaching valuable user data, such as 

address book contacts. Popular, seemingly legitimate 

apps can leak user data quietly [22, 23], so it is feasible 

that spam apps would attempt to do the same. In the 

App Store, each app has its own webpage, which 

displays app price, screenshots, description, ratings and 

text reviews left by users who downloaded the app, and 

related metadata. Ratings are integer stars in the range 

1-5. Similar to other online shopping platforms, 

positive reviews are crucial for convincing potential 

customers to purchase the app. We extract App features 

from above information like App ID, Developer ID, 

Price, Category ID, app popularity, Release Date, 

Current Version. 

B. Developer Features 

For malicious game App developers, 

spamming the App Store can be beneficial and is not 

difficult. A mobile game developer accidentally (or 

intentionally) places the in-app advertising control close 

to where the user must swipe or tap, or drag things to, 

in order to succeed in the game. Given the tiny screen 

real-estate, the user is prone to miss tapping. When he 

does so, the browser navigates to the ad-click URL. 

Mobile  app developers  are incentivized to commit 

such fraud since ad networks pay app publishers based 

on impression count [25, 24, 26]. We extract Developer 

features like Developer ID, Number of Apps, Avg App 

Rating, Avg Number of App Versions, Avg Review 

Helpfulness, and Proportion of Free Apps. 

Node Features CPD 

Fu User-avg-rating,user-num-rev Conditional 

Gaussian 

Fa App-avg-rating,app-num-rev C nditional 

Guassian 

Fe I(stars<=2) I(stars<=3) 

I(stars<=4) 

NA 

Fd Dev-num-app,deb-avg-rating Conditional

Guassian 

Ia,Id,I

u,Ie 

Binary class indicator CPT 

fd 

fa 
fu 

fe 

Id 

Ia 
Iu 

Ie 
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C. User Experience Based Features 

Ad networks usually impose strict guidelines 

to advertisers on how ad controls should be used in 

apps, documented in lengthy Publisher Terms and 

Conditions. Based on these guidelines, we extract the 

features relate to how and where the ad control is 

placed from user exeriences. Ad networks impose 

placement restrictions to prevent impression or click 

inflation, while the advertiser may restrict what kinds of 

content (i.e., ad context) the ads are placed with. For 

instance, Microsoft Mobile Advertising stipulates that a 

publisher must not ―edit, resize, modify, filter, obscure, 

hide, make transparent, or reorder any advertising‖ and 

must not ―include any Ad Inventory or display any ads 

... that includes materials or links to materials that are 

unlawful (including the sale of counterfeit goods or 

copyright piracy), obscene,.‖ [28]. Similarly, Google 

AdMob’s terms dictate that ―Ads should not be placed 

very close to or underneath buttons or any other object 

which users may accidentally click while interacting 

with your application‖ and ―Ads should not be placed 

in areas where users will randomly click or place their 

fingers on the screen‖ [27].Violators may manipulate 

the UI layout to inflate impressions, or increase none ad 

screen real estate. From a large dataset of apps, we 

extract the following features of misplacement of Ad-

control which are mainly leads to ad touch spam and 

how these are vary with app rating, the category of the 

app, and other factors. 

 

Number of Ad-controls   An app page may 

contains too many ads , while Microsoft Advertising  

allows at most 1 ad per phone screen and 3 ads per 

tablet screen [28].Therefore, if  any app contains  the 

number of viewable ads in a screen is more than k, the 

maximum allowed number of ads then it is a violator. 

Visibility of Ad-controls  Hiding the Ads behind other 

controls (e.g., buttons or images) or placed outside the 

screen also violates the terms and conditions in [28, 

27]. Developers often use this trick to give users the 

feel of an ―ad-free app‖, or to accommodate many ads 

in a page when ad networks visually inspect for ad 

count violations.  

 

We extract this feature from app page, if any 

ad in the given page is (partially) hidden or unviewable. 

For each ad, the detector first finds non-ad GUI 

elements that overlap with the Ad. Then it checks if any 

of these non-ad elements is rendered above the Ad. To 

get this we are traversed depth-first order of the DOM 

tree of app page. 

 

Size of Ad-control,  Changing size of Ads too 

small for users to read, violates the terms and 

conditions. We extract this feature from app page if any 

ad in the given page is smaller than the minimal valid 

size required by the ad network. 

 

V. EXPERIMENTS 

A.  Datasets 

The datasets consist of all selected users 

experiences for selected apps crawled from the Apple 

iOS App Store in 2012. From this data, we computed 

metadata for apps, developers, and users who post their 

gaming experiences. We obtained two datasets: the Top 

gameApps(TGA) dataset containing user gaming 

experiences and game App and the Entertainment & 

Gaming(E&G) dataset containing user gaming 

experiences and metadata for all apps in the 

Entertainment and Gaming categories. In addition, we 

created a third dataset, Labeled TGA, which contains a 

randomly chosen subset of apps from TGA having 

more than twenty user gaming experiences with app 

spam binary labels acquired through manual inspection. 

The size of each dataset is shown in Table 2. 

 

Figure 3 shows CCDFs for the TGA and E&G 

datasets. In Figure 3a, we observe that the CCDFs go at 

integer rating values, with noticeable drops 

immediately before these values. As expected, the TGA 

CCDF remains higher than the E&G CCDF at all rating 

levels in this plot, with the difference increasing with 

rating. This is because the TGA dataset contains many 

of the best apps in the entire store, while the E&G 

dataset simply contains all apps from two categories. 

 
Table 2: Sizes of  Top Apps (TGA), Entertainment 

&Gaming (E&G), and Labeled E&G datasets. 

 TGA E&G Labeled E&G 

#Apps 690 2,400 114 

#user 

gaming 

Exeriences 

4,416,800 35,035 33,130 

#Users 2,217,500 32,700 32,900 

#Develoers 350 2000 100 

 
Also, the drop near 4.5 in the TA CCDF 

(circled in red) indicates that many users would find an 

intermediate rating between 4 and 5 useful for 

delineating the very best apps. Figure 3b conforms this 

near the 4.5 rating level and also shows how the best 

apps differ from the rest. 
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B. Results 

As a baseline method to classify app spam, a 

pruned Decision Tree was trained on app and developer 

features from the Labeled E&G dataset. In addition to 

the decision tree, we tested our method. For simplicity 

and interpretability, we choose the two most common 

used features for each observed node. We choose 

Linear Gaussian to model the conditional probability of 

a feature node given its latent class. We also simplify 

the user experience feature to be a class indicator of 

high, middle and low. Hence, it is convenient for us to 

put priors on the CPT based on heuristics such as if 

conditioning on a dishonest user, a high quality app, 

and a low experience, the app is more likely to be spam. 
 

 

Figure 3: CCDFs from the E&G (blue) and TGA (green)  

Datasets. 

 

 
Table 4: Learned Parameters on Latent Nodes. The first 

Column Contains the Value of the Variable. 

 P(Iu) P(Id) P(Ia /Id 

=0 ) 

P(Ia /Id 

=1) 

0 0.11 0.13 0.92 0.17 

1 0.87 0.87 0.09 0.85 

 
The unsupervised learning is run on the E&G 

dataset. The goal is to cluster reviews using the latent 

node Ir. We start with a uniform prior for Ia, Id, Iu. We 

set a prior on P (Ie/Ia, Iu, fe) to encode common beliefs 

on a user gaming experiences truthfulness based on 

user's honesty, user experiences rating, and app's 

quality. We run Expectation Maximization [3] for 6 

iterations with a Junction Tree inference algorithm 

provided by the Bayesian Network Toolbox (BNT) [8]. 

Note that, although our goal is to cluster spam 

experiences, having other latent nodes in the model 

provides a clustering on the users, apps, and developers 

as a free byproduct. Tables 4 and 5 show the parameters 

learned from EM.  

 
Table 5: Learned Parameters on Feature Nodes. 

 
Id 

  
 0 (2.5,1.5) (0.6,0.7) 

1 (4.2,1) (0.01,0.18) 

(a) parameters of fd/Id 

 

 
Ia 

  
0 (3.3,71) (1.2,6701) 

1 (4.2,432) (0.01,90500) 

(b) parameters of fa/Ia 

 

 
Iu 

  
0 (3.9,1) (0.01,2.13) 

1 (4.0,1.5) (0.51,1.47) 

(c) parameters of fu/Iu 

 
In Table 5a and 5b, the conditional mean of 

average rating of apps and developers agrees with the 

intuition that higher quality apps and developers receive 

higher ratings. Apps from class 1 (good quality) receive 

more reviews than apps from class 0, and the variance 

is much higher in class 1. However, we notice that the 

number of apps feature for developer is similar for both 

classes, because most of the developers have only 1 or 

2 apps in this dataset. Also, the parameters of user 

features are similar for both classes because most of the 

users only posted one experience. Therefore average 

rating of users does not provide enough information for 

clustering users. The marginal probability of latent class 

in Table 4 shows that the prior belief on users, apps, 

and developers is heavily favored toward 1 (good 

class). 

 

VI. CONCLUSION 

In this paper we propose an approach for spam 

detection in Mobile game apps. To the best of our 

knowledge, our work is the first attempt for spam 

detection in this important domain. First, we propose a 

new framework for spam detection. Second, we 

propose a novel set of features particular to the mobile 

user gaming experience based features that discriminate 
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spam from nonspam. Third, we demonstrate the 

effectiveness of our approach via experiments on a 

datasets consist of all selected game apps crawled from 

the Apple iOS App Store. We propose a latent class 

model with interpretable structure and low complexity. 

On the labeled data set, even though we use the simple 

Linear Gaussian parameterization, it still achieves 

significantly higher accuracy than a baseline Decision 

Tree. On the unlabeled data set, it succeeds in 

clustering the apps and user experiences into well 

separated groups. Future work could explore extending 

our Latent Class graphical model to adopt more features 

with a different parameterization. 
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