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Abstract 

                A touch user interface (TUI) is a computer-

pointing technology based upon the sense of touch 

(haptics). Touch-spam is a type of fraud that occurs 

over TUI gadgets ex. Smart phones, tablets, phablets, 

touch laptops etc. It actually happens in TUI 

applications when a person, automated script, 

computer program or robotic action imitates a 

legitimate user of a TUI application touching on an 

advertisement (ad), for the purpose of generating a 

charge per touch without having actual interest in the 

target of the ad’s popup. Touch-spam is becoming an 

issue due to the advertising networks being a key 

beneficiary of this spam. In present days, smart phone 

gaming applications (apps) are playing a vital role to 

attract mobile-advertisements (ads) since their pocket 

portability and other versatile features. Popular apps 

are able to read the user personalized data to process 

user interests helping to generate customized ads. 

Touch-spam in smart phone apps is a fraudulent or 

invalid tap or touch on online ads, where the user has 

no actual interest in the advertiser’s site. It requires a 

user touch on online ads that pop-up dynamically in 

smart phone gaming apps. It all need the user to tap the 

screen close to where the ad is displayed .While the ad 

networks continue taking active measures to block 

click-spam today, the touch-spam still creeping under 

the TUI. It is being used by spammers to 

misappropriate the advertising revenue. The presence 

of touch-spam is largely unknown. In this paper, we 

take the first systematic look at touch-spam. We 

propose an ensemble learning approach to identify 

touch-spam Apps in Smartphone-game Apps. We 

validate our methodology using data from major ad 

networks. Our findings highlight the severity of the 

touch-spam problem.  
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I.   INTRODUCTION 
Mobile advertisements within the apps are 

only source of revenue for several mobile app 

publishers. Maximum of the apps in the major mobile 

app stores show ads [1]. To embed ads in an app, the 

app developer typically registers with a third-party  

 

mobile ad network such as AdMob [2], iAd [3], 

Microsoft Mobile Advertising [4] etc. The ad net- 

works supply the developer with an ad control (i.e. 

library with some visual elements embedded within). 

The developer includes this ad control in his app, and 

assigns it some screen real estate. When the app runs, 

the ad control is loaded, and it fetches ads from the ad 

network and displays it to the user. Different ad 

networks use different signals to serve relevant ads. 

One of the main signals that mobile ad networks use 

today is the app metadata [24]. As part of the 

registration process, most ad networks ask the 

developer to provide metadata information about the 

app (for e.g. category of the app, link to the app store 

description etc.). This allows the ad network to serve 

ads related to the app metadata. Ad networks also 

receive dynamic signals sent by the ad control every 

time it fetches a new ad. Depending on the privacy 

policies and the security architecture of the platform, 

these signals can include the location, user identity, etc. 

Note that unlike JavaScript embedded in the browsers, 

the ad controls are integral parts of the application, and 

have access to the all the APIs provided by the 

platform.  

 

A. Background on mobile advertising  

A typical mobile advertising system has five 

participants: mobile clients, advertisers, ad servers, ad 

exchanges and ad networks as Figure 2 shows. A 

mobile application includes an ad control module (e.g., 

AdControl for Windows Phones, AdMob for Android) 

which notifies the associated ad server any time an ad 

slot becomes available on the client’s device. The ad 

server decides how to monetize the ad slot by 

displaying an ad. Ads are collected from an ad 

exchange. Ad exchanges are neutral parties that 

aggregate ads from different third party ad networks 

and hold an auction every time a client’s ad slot 

becomes available. The ad networks participating in the 

exchange estimate their expected revenue from showing 

an ad in such an ad slot and place a bid on behalf of 

their customers (i.e., the advertisers).  
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Figure 1:An Architecture of Mobile Ad Network 

 

An ad network attempts to maximize its 

revenue by choosing ads that are most appropriate 

given the context of the user, in order to maximize the 

possibility of the user clicking on the ads. The ad 

network receives information about the user such as his 

profile, context, and device type from the ad server, 

through the ad exchange. Ad exchange runs the auction 

and chooses the winner with the highest bid. 

Advertisers register with their ad networks by 

submitting an ad campaign. A campaign typically 

specifies an advertising budget and a target number of 

impressions/clicks within a certain deadline (e.g., 

50,000 impressions delivered in 2 weeks).  

 

They can also specify a maximum cap on how 

many times a single client can see a specific ad and 

how to distribute ads over time (e.g., 150 impressions 

per hour). The ad server is responsible for tracking 

which ads are displayed and clicked, and thus 

determining how much money an advertiser owes. The 

revenue of an ad slot can be measured in several ways, 

most often by views (Cost Per Impression) or click-

through (Cost Per Click), the former being most 

common in mobile systems.  

 

B. Background and Motivation for Touch Spam  

A mobile game developer accidentally (or 

intentionally) places the in-app advertising control close 

to where the user must tap, or drag things to, in order to 

succeed in the game. Given the tiny screen real-estate, 

the user is prone to mistapping. When he does so, the 

browser navigates to the ad-click URL. The user may 

realize his error and switch back to the game. The 

browser, which in the mean time has already begun 

fetching the ad landing-page, aborts the attempt. As a 

result, the user will appear to have spent very little time 

on the advertiser’s page. We saw exactly this behavior 

on our mobile ads —95% of users spent less than a 

second as mentioned earlier.  

 

The core issue here is the advertiser being 

charged despite the user not spending any time on the 

landing page. It is hard for an ad network to know how 

long the user spent on the advertiser’s site. If it relied 

on the advertiser to get this information, the advertiser 

could easily lie to get a discount. Solving this without 

modifying the browser, and without hurting the user 

experience is a non-trivial problem. One mitigating 

approach would be to audit games and apps that trick 

users into mistapping on the ad. Doing so would likely 

spark an arms race for apps intentionally exploiting this 

loop-hole, but would at least protect advertisers from 

apps accidentally triggering this. Unfortunately, ad 

networks are making it harder for advertisers and 

independent third-parties to identify bad apps. The most 

beneficiary is app, because the app made money from 

the ad network. Our studies shows that at least 2% of 

clicks on control ads came from smartphone games that 

all require the user to tap the screen close to where the 

ad is displayed. One such example is the Ant-smasher 

iPhone app where ants randomly walk around the 

screen up to (and under) where the ad is shown in the 

game, and the user must tap the ant before it disappears 

from the screen to progress in the game.  

 
Figure 2: Illustration of Click-Spam 

 

Having identified the touch-spam problem, in 

this paper we propose a new framework for touch-spam 

detection in mobile game Apps. We propose a novel set 

of features particular to the mobile advertisement-

control location based features. We validate our 

methodology using data from major ad networks. We 

demonstrate the effectiveness of our approach via 

experiments on a datasets consist of all selected game 

apps crawled from the Apple iOS App Store in 2012. 

We conduct various experiments with our dataset using 

Weka, We would like to detect as many spam posts as 

possible while avoiding misclassifying non-spam posts 

as spam ones. Classifiers built using J48, an 

implementation of C4.5 [24] decision tree learning 
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algorithm, give us the best performance in terms of 

precision and recall, F-1 measure.  

 

The rest of the paper is organized as follows. 

In Section 2, we review approaches for click spam 

detection in previous work. In Section 3, we introduce 

our overall framework for touch-spam detection in 

Mobile Apps. Section 4 presents novel set of features 

used in the classifier. Section 5 describes our 

experiment setup and shows experimental results. 

Finally, our conclusions and future directions are 

presented in Section 6.  

 

II.   RELATED WORK 

Existing works on ad fraud mainly focus on 

the click-spam behaviors, characterizing the features of 

click-spam, either targeting specific attacks [5, 6, 16, 

18], or taking a broader view [7]. Some work has 

examined other elements of the click-spam ecosystem: 

the quality of purchased traffic [19, 20], and the spam 

profit model [12, 13]. Very little work exists in 

exploring clickspam in mobile apps. From the 

controlled experiment, authors in [7] observed that 

around one third of the mobile ad clicks may constitute 

click-spam. A contemporaneous paper [9] claimed that 

they are not aware of any mobile malware in the wild 

that performs advertising click fraud. DECAF focuses 

on detecting violations to ad network terms and 

conditions, and even before potentially fraudulent 

clicks have been generated. With regard to detection, 

most existing works focus on bot-driven click spam, 

either by analyzing search engine query logs to identify 

outliers in query distributions [52], characterizing 

networking traffic to infer coalitions made by a group 

of bot-driven fraudsters [14, 15], or authenticating 

normal user clicks to filter out bot-driven clicks [10, 11, 

49]. A recent work, Viceroi [8], designed a more 

general framework that is possible to detect not only 

bot-driven spam, but also some non-bot driven ones 

(like search-hijacking).To the best of our knowledge, 

ours is the first work to detect touch spam in mobile 

apps. 

 

III.   FRAMEWORK 

This section presents an overview of our 

approach for touch-spam detection in mobile Apps. The 

overall framework is described in Figure 2. First, we 

extract the App features from Apps. Given the 

information of App, we extract App developer features. 

These features traditionally used in previous work for 

spam detection in IOS App store [99(identifying sam 

ios store]. we propose a novel set of features particular 

to the mobile advertisement-control location based , e.g. 

Ad-control is located at underneath buttons or any other 

object which users may accidentally click while 

interacting with your application or users will randomly 

click or place their fingers on the screen. These features 

are also defined Using external resources collected 

from Mobile game user experiences. Finally, given a 

feature vector for each App, we transform the spam 

detection problem into a classification problem for 

which we can use many 

 

 
Figure 3:Framework for Classification of Spam Apps 

 

well established tools and techniques to solve. Like 

some previous works in detecting spam content on web, 

we apply a decision tree classifier to classify the App 

into spam or non-spam category [21].  

 

IV.   FEATURES 

To build classifiers, we extract numerous 

Group features from the App page. We first use an App 

features. Then we extract App Developer features from 

App. Then we do deeper analysis to extract more 

mobile ad-control location based features including 

ones using external sources of information.  

 

A. App Features  

Developers of spam apps (malicious 

developers) are primarily interested in gaining 

monetary profit or leaching valuable user data, such as 

address book contacts. Popular, seemingly legitimate 

apps can leak user data quietly [22, 23], so it is feasible 

that spam apps would attempt to do the same. In the 

App Store, each app has its own webpage, which 

displays app price, screenshots, description, ratings and 

text reviews left by users who downloaded the app, and 

related metadata. Ratings are integer stars in the range 

1-5. Similar to other online shopping platforms, 
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positive reviews are crucial for convincing potential 

customers to purchase the app. We extract App features 

from above information like App ID, Developer ID, 

Price, Category ID, app popularity, Release Date, 

Current Version.  

 

B.  Developer Features  

For malicious game App developers, spamming the 

App Store can be beneficial and is not difficult. A 

mobile game developer accidentally (or intentionally) 

places the in-app advertising control close to where the 

user must swipe or tap, or drag things to, in order to 

succeed in the game. Given the tiny screen real-estate, 

the user is prone to miss tapping. When he does so, the 

browser navigates to the ad-click URL. Mobile app 

developers are incentivized to commit such fraud since 

ad networks pay app publishers based on impression 

count [25, 24, 26]. We extract Developer features like 

Developer ID, Number of Apps, Avg App Rating, Avg 

Number of App Versions, Avg Review Helpfulness, 

and Proportion of Free Apps.  

 

C. Ad-control Location Based Features  

Ad networks usually impose strict guidelines 

to advertisers on how ad controls should be used in 

apps, documented in lengthy Publisher Terms and 

Conditions. Based on these guidelines, we extract the 

features relate to how and where the ad control is 

placed. Ad networks impose placement restrictions to 

prevent impression or click inflation, while the 

advertiser may restrict what kinds of content (i.e., ad 

context) the ads are placed with. For instance, 

Microsoft Mobile Advertising stipulates that a publisher 

must not ―edit, resize, modify, filter, obscure, hide, 

make transparent, or reorder any advertising‖ and must 

not ―include any Ad Inventory or display any ads ... 

that includes materials or links to materials that are 

unlawful (including the sale of counterfeit goods or 

copyright piracy), obscene,.‖ [28]. Similarly, Google 

AdMob’s terms dictate that ―Ads should not be placed 

very close to or underneath buttons or any other object 

which users may accidentally click while interacting 

with your application‖ and ―Ads should not be placed 

in areas where users will randomly click or place their 

fingers on the screen‖ [27].Violators may manipulate 

the UI layout to inflate impressions, or increase none ad 

screen real estate. From a large dataset of apps, we 

extract the following features of misplacement of Ad-

control which are mainly leads to ad touch spam and 

how these are vary with app rating, the category of the 

app, and other factors.  

 

Number of Ad-controls An app page may contains too 

many ads , while Microsoft Advertising allows at most 

1 ad per phone screen and 3 ads per tablet screen 

[28].Therefore, if any app contains the number of 

viewable ads in a screen is more than k, the maximum 

allowed number of ads then it is a violator.  

 

Visibility of Ad-controls Hiding the Ads behind other 

controls (e.g., buttons or images) or placed outside the 

screen also violates the terms and conditions in [28, 

27]. Developers often use this trick to give users the 

feel of an ―ad-free app‖, or to accommodate many ads 

in a page when ad networks visually inspect for ad 

count violations.  

We extract this feature from app page, if any ad in the 

given page is (partially) hidden or unviewable. For each 

ad, the detector first finds non-ad GUI elements that 

overlap with the Ad. Then it checks if any of these non-

ad elements is rendered above the Ad. To get this we 

are traversed depth-first order of the DOM tree of app 

page.  

 

Size of Ad-control, Changing size of Ads too small for 

users to read, violates the terms and conditions. We 

extract this feature from app page if any ad in the given 

page is smaller than the minimal valid size required by 

the ad network.  

 

Misplace of Ad-control on tiny screen Ads are partially 

hidden or placed next to actionable control such as 

buttons to capture accidental clicks. We extract this 

feature from app if the distance between an ad control 

and a clickable non-ad element is below a predefined 

threshold or if an ad control partially covers a clickable 

non-ad control.  

 

User interest We collect information from server logs. 

We extract this feature from app if user interest ratio is 

below a predefined threshold.  

 
 

V.   EXPERIMENTS 

The datasets consist of all selected game apps 

crawled from the Apple iOS App Store in 2012. We 

collected 13,267 top free game apps from App Store. 

From this data, we computed metadata for apps, 

developers, and users who post reviews .We divide the 

whole data sets into two parts as training dataset and 

test dataset. We then went for manual labeling of 

training datasets. To label apps as spam or non spam, 

we invited some volunteers who had experience with 

mobile game playing to participate. After labeling 

process, we have 81 spam posts (17%) and 401 non 

spam posts (83 %.).  
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A. Results  

We use Recall, Precision and F-Measure to 

measure the performance of classifier. Assume that we 

have the D classifier. We use D to classify a set of input 

pages. The possible output of D can be represented 

using a confusion matrix as in Table1. 

 
Table 1:Confusion Matrix 

 
The following formulas are used to calculate Recall, 

Precision, and F-Measure. 

 

 
 

We conduct various experiments with our 

dataset using Weka, a popular machine learning 

software suite implementing commonly used machine 

learning algorithms. We would like to detect as many 

spam touches as possible while avoiding misclassifying 

non-spam touches as spam ones. Classifiers built using 

J48, a decision tree learning algorithm, an 

implementation of C4.5 [31] give us the best 

performance with our experiments. Table 2 summarizes 

our experiment results. 

 

To improve the performance of our classifier, 

we try to use boosting [30] and bagging [29] 

techniques. However, our experiment results show that 

boosting and bagging cannot help much. From the 

experimental results, we can see that the Ad-control 

location features help improve classifier's performance 

significantly in all True Positive rate, False Positive 

Rate, and F-Measure.  

 

Figure 4 plots Precision-Recall curve as the 

threshold parameter is varied. Recall (same as true-

positive rate) tracks what fraction of click-spam. 

Precision tracks the fraction of true positives i.e., the 

more false positives we admit for a given recall, the 

lower the precision. 

Table 2: Performance Measures with Different Ensemble 

Algorithms 

Algorithm Precision Recall F-

Measure 

ROC 

Bagging FT 

Tree 

0.968 0.969 0.977 0.930 

Bagging 

RandomForest 

0.998 0.998 0.997 0.935 

Adaboost 

REPTree 

0.987 0.987 0.980 0.933 

Adaboost 

LADTree 

0.976 0.970 0.977 0.933 

Stacking 

NBTree 

0.968 0.969 0.977 0.922 

 
Figure 4: Precision-Recall Curve 

The performance of the models was evaluated based on 

the average precision as shown in Table 3. 

 

Where Precision(i) denotes the precision at 

cutoff i in the publisher list, i.e., the fraction of correct 

fraud prediction up to the position i, and m is the 

number of actual fraud publishers. Note that, when the 
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ith prediction is incorrect, Precision (i) = 0. In our 

experimental setting, we set k=260 for evaluation. 

Average precision works on the prediction 

ranking rather than actual number of prediction to OK 

and Fraud classes. 

Table 3: Performance for Different Ensemble 

Classification Algorithms on the New set of Features 

Method Average Precision 

Bagging FT Tree 

 Bagging RandomForest 

Adaboost REPTree 

Adaboost LADTree 

Stacking NBTree 

RandomsubSpace 

RotationForest 

BayesNet 

RPROP 

36.3% 

           52.3% 

35.8% 

37% 

37.9% 

38.9% 

42.9% 

33.7% 

48.3% 

 

The Random Forest classification algorithm 

used with the new set of features for classifying spam 

web pages showed that around 52.3 percent of the 

publishers are involved in spam as shown in Figure 5. 

 

Figure 

5: Average precision of the Different CLassification 

Algorithms 

 

VI. CONCLUSION 

In this paper we propose an approach for 

touch-spam detection in Mobile game apps. To the best 

of our knowledge, our work is the first attempt for 

touch-spam detection in this important domain. First, 

we propose a new framework for touch-spam detection. 

Second, we propose a novel set of features particular to 

the mobile advertisement-control location based 

features that discriminate spam from nonspam. Third, 

We demonstrate the effectiveness of our approach via 

experiments on a datasets consist of all selected game 

apps crawled from the Apple iOS App Store. We 

conduct various experiments with our dataset using 

Weka, Classifiers built using J48, an implementation of 

C4.5 decision tree learning algorithm, give us the best 

performance in terms of precision and recall, F-1 

measure. For future work, we plan to extend the 

experimental dataset. Identifying good instances for 

judgment is itself an interesting problem. Since this is a 

highly imbalanced classification problem, if we 

randomly pick a sample of instances for training 

datasets, there are very few spam instances in the 

sample. To overcome this, we plan to use active 

learning technique to pick training dataset instances that 

are likely to be spam.  
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