
International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 6 Nov to Dec 2017

ISSN: 2249 – 2615 http://www.ijpttjournal.org Page 18

An Ensemble Learning Approach to Detect

Touch-Spam in Mobile Ad-Networks
M. Sree Vani

Dept of CSE, MGIT , Hyderabad-500075

Abstract

 A touch user interface (TUI) is a computer-

pointing technology based upon the sense of touch

(haptics). Touch-spam is a type of fraud that occurs

over TUI gadgets ex. Smart phones, tablets, phablets,

touch laptops etc. It actually happens in TUI

applications when a person, automated script,

computer program or robotic action imitates a

legitimate user of a TUI application touching on an

advertisement (ad), for the purpose of generating a

charge per touch without having actual interest in the

target of the ad’s popup. Touch-spam is becoming an

issue due to the advertising networks being a key

beneficiary of this spam. In present days, smart phone

gaming applications (apps) are playing a vital role to

attract mobile-advertisements (ads) since their pocket

portability and other versatile features. Popular apps

are able to read the user personalized data to process

user interests helping to generate customized ads.

Touch-spam in smart phone apps is a fraudulent or

invalid tap or touch on online ads, where the user has

no actual interest in the advertiser’s site. It requires a

user touch on online ads that pop-up dynamically in

smart phone gaming apps. It all need the user to tap the

screen close to where the ad is displayed .While the ad

networks continue taking active measures to block

click-spam today, the touch-spam still creeping under

the TUI. It is being used by spammers to

misappropriate the advertising revenue. The presence

of touch-spam is largely unknown. In this paper, we

take the first systematic look at touch-spam. We

propose an ensemble learning approach to identify

touch-spam Apps in Smartphone-game Apps. We

validate our methodology using data from major ad

networks. Our findings highlight the severity of the

touch-spam problem.

Keywords : Spam, mobile apps, touch spam, click

spam

I. INTRODUCTION
Mobile advertisements within the apps are

only source of revenue for several mobile app

publishers. Maximum of the apps in the major mobile

app stores show ads [1]. To embed ads in an app, the

app developer typically registers with a third-party

mobile ad network such as AdMob [2], iAd [3],

Microsoft Mobile Advertising [4] etc. The ad net-

works supply the developer with an ad control (i.e.

library with some visual elements embedded within).

The developer includes this ad control in his app, and

assigns it some screen real estate. When the app runs,

the ad control is loaded, and it fetches ads from the ad

network and displays it to the user. Different ad

networks use different signals to serve relevant ads.

One of the main signals that mobile ad networks use

today is the app metadata [24]. As part of the

registration process, most ad networks ask the

developer to provide metadata information about the

app (for e.g. category of the app, link to the app store

description etc.). This allows the ad network to serve

ads related to the app metadata. Ad networks also

receive dynamic signals sent by the ad control every

time it fetches a new ad. Depending on the privacy

policies and the security architecture of the platform,

these signals can include the location, user identity, etc.

Note that unlike JavaScript embedded in the browsers,

the ad controls are integral parts of the application, and

have access to the all the APIs provided by the

platform.

A. Background on mobile advertising

A typical mobile advertising system has five

participants: mobile clients, advertisers, ad servers, ad

exchanges and ad networks as Figure 2 shows. A

mobile application includes an ad control module (e.g.,

AdControl for Windows Phones, AdMob for Android)

which notifies the associated ad server any time an ad

slot becomes available on the client’s device. The ad

server decides how to monetize the ad slot by

displaying an ad. Ads are collected from an ad

exchange. Ad exchanges are neutral parties that

aggregate ads from different third party ad networks

and hold an auction every time a client’s ad slot

becomes available. The ad networks participating in the

exchange estimate their expected revenue from showing

an ad in such an ad slot and place a bid on behalf of

their customers (i.e., the advertisers).

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 6 Nov to Dec 2017

ISSN: 2249 – 2615 http://www.ijpttjournal.org Page 19

Figure 1:An Architecture of Mobile Ad Network

An ad network attempts to maximize its

revenue by choosing ads that are most appropriate

given the context of the user, in order to maximize the

possibility of the user clicking on the ads. The ad

network receives information about the user such as his

profile, context, and device type from the ad server,

through the ad exchange. Ad exchange runs the auction

and chooses the winner with the highest bid.

Advertisers register with their ad networks by

submitting an ad campaign. A campaign typically

specifies an advertising budget and a target number of

impressions/clicks within a certain deadline (e.g.,

50,000 impressions delivered in 2 weeks).

They can also specify a maximum cap on how

many times a single client can see a specific ad and

how to distribute ads over time (e.g., 150 impressions

per hour). The ad server is responsible for tracking

which ads are displayed and clicked, and thus

determining how much money an advertiser owes. The

revenue of an ad slot can be measured in several ways,

most often by views (Cost Per Impression) or click-

through (Cost Per Click), the former being most

common in mobile systems.

B. Background and Motivation for Touch Spam

A mobile game developer accidentally (or

intentionally) places the in-app advertising control close

to where the user must tap, or drag things to, in order to

succeed in the game. Given the tiny screen real-estate,

the user is prone to mistapping. When he does so, the

browser navigates to the ad-click URL. The user may

realize his error and switch back to the game. The

browser, which in the mean time has already begun

fetching the ad landing-page, aborts the attempt. As a

result, the user will appear to have spent very little time

on the advertiser’s page. We saw exactly this behavior

on our mobile ads —95% of users spent less than a

second as mentioned earlier.

The core issue here is the advertiser being

charged despite the user not spending any time on the

landing page. It is hard for an ad network to know how

long the user spent on the advertiser’s site. If it relied

on the advertiser to get this information, the advertiser

could easily lie to get a discount. Solving this without

modifying the browser, and without hurting the user

experience is a non-trivial problem. One mitigating

approach would be to audit games and apps that trick

users into mistapping on the ad. Doing so would likely

spark an arms race for apps intentionally exploiting this

loop-hole, but would at least protect advertisers from

apps accidentally triggering this. Unfortunately, ad

networks are making it harder for advertisers and

independent third-parties to identify bad apps. The most

beneficiary is app, because the app made money from

the ad network. Our studies shows that at least 2% of

clicks on control ads came from smartphone games that

all require the user to tap the screen close to where the

ad is displayed. One such example is the Ant-smasher

iPhone app where ants randomly walk around the

screen up to (and under) where the ad is shown in the

game, and the user must tap the ant before it disappears

from the screen to progress in the game.

Figure 2: Illustration of Click-Spam

Having identified the touch-spam problem, in

this paper we propose a new framework for touch-spam

detection in mobile game Apps. We propose a novel set

of features particular to the mobile advertisement-

control location based features. We validate our

methodology using data from major ad networks. We

demonstrate the effectiveness of our approach via

experiments on a datasets consist of all selected game

apps crawled from the Apple iOS App Store in 2012.

We conduct various experiments with our dataset using

Weka, We would like to detect as many spam posts as

possible while avoiding misclassifying non-spam posts

as spam ones. Classifiers built using J48, an

implementation of C4.5 [24] decision tree learning

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 6 Nov to Dec 2017

ISSN: 2249 – 2615 http://www.ijpttjournal.org Page 20

algorithm, give us the best performance in terms of

precision and recall, F-1 measure.

The rest of the paper is organized as follows.

In Section 2, we review approaches for click spam

detection in previous work. In Section 3, we introduce

our overall framework for touch-spam detection in

Mobile Apps. Section 4 presents novel set of features

used in the classifier. Section 5 describes our

experiment setup and shows experimental results.

Finally, our conclusions and future directions are

presented in Section 6.

II. RELATED WORK

Existing works on ad fraud mainly focus on

the click-spam behaviors, characterizing the features of

click-spam, either targeting specific attacks [5, 6, 16,

18], or taking a broader view [7]. Some work has

examined other elements of the click-spam ecosystem:

the quality of purchased traffic [19, 20], and the spam

profit model [12, 13]. Very little work exists in

exploring clickspam in mobile apps. From the

controlled experiment, authors in [7] observed that

around one third of the mobile ad clicks may constitute

click-spam. A contemporaneous paper [9] claimed that

they are not aware of any mobile malware in the wild

that performs advertising click fraud. DECAF focuses

on detecting violations to ad network terms and

conditions, and even before potentially fraudulent

clicks have been generated. With regard to detection,

most existing works focus on bot-driven click spam,

either by analyzing search engine query logs to identify

outliers in query distributions [52], characterizing

networking traffic to infer coalitions made by a group

of bot-driven fraudsters [14, 15], or authenticating

normal user clicks to filter out bot-driven clicks [10, 11,

49]. A recent work, Viceroi [8], designed a more

general framework that is possible to detect not only

bot-driven spam, but also some non-bot driven ones

(like search-hijacking).To the best of our knowledge,

ours is the first work to detect touch spam in mobile

apps.

III. FRAMEWORK

This section presents an overview of our

approach for touch-spam detection in mobile Apps. The

overall framework is described in Figure 2. First, we

extract the App features from Apps. Given the

information of App, we extract App developer features.

These features traditionally used in previous work for

spam detection in IOS App store [99(identifying sam

ios store]. we propose a novel set of features particular

to the mobile advertisement-control location based , e.g.

Ad-control is located at underneath buttons or any other

object which users may accidentally click while

interacting with your application or users will randomly

click or place their fingers on the screen. These features

are also defined Using external resources collected

from Mobile game user experiences. Finally, given a

feature vector for each App, we transform the spam

detection problem into a classification problem for

which we can use many

Figure 3:Framework for Classification of Spam Apps

well established tools and techniques to solve. Like

some previous works in detecting spam content on web,

we apply a decision tree classifier to classify the App

into spam or non-spam category [21].

IV. FEATURES

To build classifiers, we extract numerous

Group features from the App page. We first use an App

features. Then we extract App Developer features from

App. Then we do deeper analysis to extract more

mobile ad-control location based features including

ones using external sources of information.

A. App Features

Developers of spam apps (malicious

developers) are primarily interested in gaining

monetary profit or leaching valuable user data, such as

address book contacts. Popular, seemingly legitimate

apps can leak user data quietly [22, 23], so it is feasible

that spam apps would attempt to do the same. In the

App Store, each app has its own webpage, which

displays app price, screenshots, description, ratings and

text reviews left by users who downloaded the app, and

related metadata. Ratings are integer stars in the range

1-5. Similar to other online shopping platforms,

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 6 Nov to Dec 2017

ISSN: 2249 – 2615 http://www.ijpttjournal.org Page 21

positive reviews are crucial for convincing potential

customers to purchase the app. We extract App features

from above information like App ID, Developer ID,

Price, Category ID, app popularity, Release Date,

Current Version.

B. Developer Features

For malicious game App developers, spamming the

App Store can be beneficial and is not difficult. A

mobile game developer accidentally (or intentionally)

places the in-app advertising control close to where the

user must swipe or tap, or drag things to, in order to

succeed in the game. Given the tiny screen real-estate,

the user is prone to miss tapping. When he does so, the

browser navigates to the ad-click URL. Mobile app

developers are incentivized to commit such fraud since

ad networks pay app publishers based on impression

count [25, 24, 26]. We extract Developer features like

Developer ID, Number of Apps, Avg App Rating, Avg

Number of App Versions, Avg Review Helpfulness,

and Proportion of Free Apps.

C. Ad-control Location Based Features

Ad networks usually impose strict guidelines

to advertisers on how ad controls should be used in

apps, documented in lengthy Publisher Terms and

Conditions. Based on these guidelines, we extract the

features relate to how and where the ad control is

placed. Ad networks impose placement restrictions to

prevent impression or click inflation, while the

advertiser may restrict what kinds of content (i.e., ad

context) the ads are placed with. For instance,

Microsoft Mobile Advertising stipulates that a publisher

must not ―edit, resize, modify, filter, obscure, hide,

make transparent, or reorder any advertising‖ and must

not ―include any Ad Inventory or display any ads ...

that includes materials or links to materials that are

unlawful (including the sale of counterfeit goods or

copyright piracy), obscene,.‖ [28]. Similarly, Google

AdMob’s terms dictate that ―Ads should not be placed

very close to or underneath buttons or any other object

which users may accidentally click while interacting

with your application‖ and ―Ads should not be placed

in areas where users will randomly click or place their

fingers on the screen‖ [27].Violators may manipulate

the UI layout to inflate impressions, or increase none ad

screen real estate. From a large dataset of apps, we

extract the following features of misplacement of Ad-

control which are mainly leads to ad touch spam and

how these are vary with app rating, the category of the

app, and other factors.

Number of Ad-controls An app page may contains too

many ads , while Microsoft Advertising allows at most

1 ad per phone screen and 3 ads per tablet screen

[28].Therefore, if any app contains the number of

viewable ads in a screen is more than k, the maximum

allowed number of ads then it is a violator.

Visibility of Ad-controls Hiding the Ads behind other

controls (e.g., buttons or images) or placed outside the

screen also violates the terms and conditions in [28,

27]. Developers often use this trick to give users the

feel of an ―ad-free app‖, or to accommodate many ads

in a page when ad networks visually inspect for ad

count violations.

We extract this feature from app page, if any ad in the

given page is (partially) hidden or unviewable. For each

ad, the detector first finds non-ad GUI elements that

overlap with the Ad. Then it checks if any of these non-

ad elements is rendered above the Ad. To get this we

are traversed depth-first order of the DOM tree of app

page.

Size of Ad-control, Changing size of Ads too small for

users to read, violates the terms and conditions. We

extract this feature from app page if any ad in the given

page is smaller than the minimal valid size required by

the ad network.

Misplace of Ad-control on tiny screen Ads are partially

hidden or placed next to actionable control such as

buttons to capture accidental clicks. We extract this

feature from app if the distance between an ad control

and a clickable non-ad element is below a predefined

threshold or if an ad control partially covers a clickable

non-ad control.

User interest We collect information from server logs.

We extract this feature from app if user interest ratio is

below a predefined threshold.

V. EXPERIMENTS

The datasets consist of all selected game apps

crawled from the Apple iOS App Store in 2012. We

collected 13,267 top free game apps from App Store.

From this data, we computed metadata for apps,

developers, and users who post reviews .We divide the

whole data sets into two parts as training dataset and

test dataset. We then went for manual labeling of

training datasets. To label apps as spam or non spam,

we invited some volunteers who had experience with

mobile game playing to participate. After labeling

process, we have 81 spam posts (17%) and 401 non

spam posts (83 %.).

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 6 Nov to Dec 2017

ISSN: 2249 – 2615 http://www.ijpttjournal.org Page 22

A. Results

We use Recall, Precision and F-Measure to

measure the performance of classifier. Assume that we

have the D classifier. We use D to classify a set of input

pages. The possible output of D can be represented

using a confusion matrix as in Table1.

Table 1:Confusion Matrix

The following formulas are used to calculate Recall,

Precision, and F-Measure.

We conduct various experiments with our

dataset using Weka, a popular machine learning

software suite implementing commonly used machine

learning algorithms. We would like to detect as many

spam touches as possible while avoiding misclassifying

non-spam touches as spam ones. Classifiers built using

J48, a decision tree learning algorithm, an

implementation of C4.5 [31] give us the best

performance with our experiments. Table 2 summarizes

our experiment results.

To improve the performance of our classifier,

we try to use boosting [30] and bagging [29]

techniques. However, our experiment results show that

boosting and bagging cannot help much. From the

experimental results, we can see that the Ad-control

location features help improve classifier's performance

significantly in all True Positive rate, False Positive

Rate, and F-Measure.

Figure 4 plots Precision-Recall curve as the

threshold parameter is varied. Recall (same as true-

positive rate) tracks what fraction of click-spam.

Precision tracks the fraction of true positives i.e., the

more false positives we admit for a given recall, the

lower the precision.

Table 2: Performance Measures with Different Ensemble

Algorithms

Algorithm Precision Recall F-

Measure

ROC

Bagging FT

Tree

0.968 0.969 0.977 0.930

Bagging

RandomForest

0.998 0.998 0.997 0.935

Adaboost

REPTree

0.987 0.987 0.980 0.933

Adaboost

LADTree

0.976 0.970 0.977 0.933

Stacking

NBTree

0.968 0.969 0.977 0.922

Figure 4: Precision-Recall Curve

The performance of the models was evaluated based on

the average precision as shown in Table 3.

Where Precision(i) denotes the precision at

cutoff i in the publisher list, i.e., the fraction of correct

fraud prediction up to the position i, and m is the

number of actual fraud publishers. Note that, when the

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 6 Nov to Dec 2017

ISSN: 2249 – 2615 http://www.ijpttjournal.org Page 23

ith prediction is incorrect, Precision (i) = 0. In our

experimental setting, we set k=260 for evaluation.

Average precision works on the prediction

ranking rather than actual number of prediction to OK

and Fraud classes.

Table 3: Performance for Different Ensemble

Classification Algorithms on the New set of Features

Method Average Precision

Bagging FT Tree

 Bagging RandomForest

Adaboost REPTree

Adaboost LADTree

Stacking NBTree

RandomsubSpace

RotationForest

BayesNet

RPROP

36.3%

 52.3%

35.8%

37%

37.9%

38.9%

42.9%

33.7%

48.3%

The Random Forest classification algorithm

used with the new set of features for classifying spam

web pages showed that around 52.3 percent of the

publishers are involved in spam as shown in Figure 5.

Figure

5: Average precision of the Different CLassification

Algorithms

VI. CONCLUSION

In this paper we propose an approach for

touch-spam detection in Mobile game apps. To the best

of our knowledge, our work is the first attempt for

touch-spam detection in this important domain. First,

we propose a new framework for touch-spam detection.

Second, we propose a novel set of features particular to

the mobile advertisement-control location based

features that discriminate spam from nonspam. Third,

We demonstrate the effectiveness of our approach via

experiments on a datasets consist of all selected game

apps crawled from the Apple iOS App Store. We

conduct various experiments with our dataset using

Weka, Classifiers built using J48, an implementation of

C4.5 decision tree learning algorithm, give us the best

performance in terms of precision and recall, F-1

measure. For future work, we plan to extend the

experimental dataset. Identifying good instances for

judgment is itself an interesting problem. Since this is a

highly imbalanced classification problem, if we

randomly pick a sample of instances for training

datasets, there are very few spam instances in the

sample. To overcome this, we plan to use active

learning technique to pick training dataset instances that

are likely to be spam.

REFERENCES
[1] S.Ganov, C. Killmar, S. Khurshid, and D. Perry. Event listener

analysis and symbolic execution for testing gui applications. In

ICFEM, 2009.

[2] Google admob. http://www.google.com/ads/admob/.

[3] iad app network.

http://developer.apple.com/support/appstore/iad-app-network/.

[4] Microsoft advertising.

http://advertising.microsoft.com/enus/splitter.

[5] S.Alrwais, A. Gerber, C. Dunn, O. Spatscheck,M. Gupta, and

E.Osterweil. Dissecting ghost clicks: Ad fraud via misdirected

human clicks. In ACSAC, 2012.

[6] T.Blizard and N. Livic. Click-fraud monetizing malware: A

survey and case study. In MALWARE,2012.

[7] P.Chia, Y. Yamamoto, and N. Asokan. Is this app safe? a large

scale study on application permissions and risk signals. In

WWW, 2012.

[8] V.Dave, S. Guha, and Y. Zhang. Measuring and fingerprinting

click-spam in ad networks. In ACM SIGCOMM, 2012.

[9] C.Cadar D. Dunbar and D. Engler. Klee: Unassisted and

automatic generation of high-coverage tests for complex

systems programs. In USENIX OSDI, 2008.

[10] P.Gilbert, B. Chun, L. Cox, and J. Jung. Vision:automated

security validation of mobile apps at app markets. In MCS,

2011.

[11] H.Haddadi. Fighting online click-fraud using bluff ads. ACM

Computer Communication Review, 40(2):21–25, 2010.14

[12] C.Hu and I. Neamtiu. Automating gui testing for android

applications. In AST, 2011.

[13] A.MacHiry, R. Tahiliani, and M. Naik. Dynodroid: An input

generation system for android apps. In FSE, 2013.

[14] A.Mesbah and A. van Deursen. Invariant-based automatic

testing of ajax user interfaces. In ICSE, 2009. Conference [15]

Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling

ajax-based web applications through dynamic analysis of user

interface state changes. ACM Transactions on the Web, 6(1):1–

30, 2012.

[15] A.Metwally, D. Agrawal, and A. El Abbadi.

Detectives:Detecting coalition hit inflation attacks in advertising

networks streams. In WWW, 2007.

[16] A.Metwally, F. Emekci, D. Agrawal, and A. El Abbadi.Sleuth:

Single-publisher attack detection using correlation hunting. In

PVLDB, 2008.

[17] B.Miller, P. Pearce, C. Grier, C. Kreibich, and V. Paxson.

What’s clicking what? techniques and

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 6 Nov to Dec 2017

ISSN: 2249 – 2615 http://www.ijpttjournal.org Page 24

[18] innovations of today’s clickbots. In DIMVA, 2011. [19] L.

Ravindranath, J. Padhye, S. Agarwal, R. Mahajan,I. Obermiller,

and S. Shayandeh. Appinsight:

[19] mobile app performance monitoring in the wild. In USENIX

OSDI, 2012.

[20] W.Yang, M. Prasad, and T. Xie. A grey-box approach for

automated gui-model generation of mobile applications. In

FASE, 2013.

[21] M.Najork. Web spam detection. In L. Liu and M. T.•Ozsu,

editors, Encyclopedia of Database Systems, pages 3520{3523.

Springer US, 2009.

[22] Nick Bilton. Disruptions: So Many Apologies, So Much Data

Mining. http://bits.blogs.nytimes.com/2012/02/12/disruptions-

so-many-apologies-so-much-data-mining, 2012.

[23] Peter Gilbert, Byung-Gon Chun, Landon P Cox, and Jaeyeon

Jung. Vision: automated security validation of mobile apps at

app markets. In Proceedings of the second international

workshop on Mobile cloud computing and services - MCS '11,

page 21, New York, New York, USA, 2011. ACM Press.

[24] Google admob: What’s the difference between estimated and

finalized earnings? http://support.

google.com/adsense/answer/168408/.

[25] Microsoft advertising: Build your business. http:

//advertising.microsoft.com/en-us/splitter.

[26] iad app network.

http://developer.apple.com/support/appstore/iad-app-network/.

[27] Admob publisher guidelines and policies.

http://support.google.com/admob/answer/1307237?hl=en&ref

topic=1307235.

[28] Microsoft pubcenter publisher terms and

conditions.http://pubcenter.microsoft.com/StaticHTML/TC/TC

en.html.

[29] L.Breiman. Bagging predictors. Machine

Learning,24(2):123{140, 1996.

[30] Y.Freund and R. E. Schapire. A decision-theoretic

generalization of on-line learning and an application to

boosting. In European Conference on Computational Learning

Theory, pages 23{37, 1995.

