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81.Introduction and Basic Results:

Throughout this paper, by a graph we mean a non-empty, finite, simple and connected one. Chemical
graphs are the graph-based descriptions of molecules where atoms are represented by vertices and bonds by edges.
The association of a non-negative real number to a graph G is called a ‘topological index’ of G. These indices have
significant applications to the graphs associated to the molecular structure of a chemical compound (designated as
molecular graphs).

For the standard notation and results we refer Bondy & Murthy ([ 1]).

For ready reference, we give the following.

Definition 1.1([ 5]) : G, H are disjoint graphs. The Tensor product of G and H, denoted by G ~ H (that is isomorphic
to H ~ G) is the graph whose vertex set is V(G) x V(H) and the edge set being the set of all edges of the form (u, v)
(u*, v') where u, u' € V(G), v,v} e V(H), uu'e E(G) and w'e E(H).

Result 1.2 [ 5 ]: G4, G, are connected graphs. Then G; ™ G, is connected if and only if (iff) either G, or G, contains
an odd cycle.

Result 1.3 [4]: Form, n > 2, K, * K, (isomorphic to K, * Ky,) is a simple, finite and (m-1)(n-1)
— regular graph with mn vertices and ¥2 mn (m —1)(n — 1) edges. Further it is

(a) bipartite only when one of m, nis 2 (b) connected when atleast one of m, n is > 3.
Result 1.4 [4]: C, " C,isasimple, 4 —regular graph with mn vertices and hence 2mn edges.
Result 1.5: Form, n> 3, C, * C,, is a bipartite graph iff atleast one of m, n is even.

To discuss about edge analogues, we first introduce the following:

Definition 1.6: Let G be a graph with edge set E(G). Then the edge Szeged Index of G, denoted by Ed- Sz(G) is
defined to be

> m,(e/G)m,(e/G) where

e=uveE(G)

My(e/G) = {f € E(G) : d(u, f) <d(v, H)},
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M\(e/G) = {f €E(G) : d(v, f) <d(u, N};

my(e) = [My(e)| , my(e) = [My(e)| ( | |” denotes the cardinality)
and

if f=xy, then

d(u, f) = Min{d(u, x), d(u, ¥)} and d(v, f) = Min{d(v, x), d(v, y)}.

Definition 1.7: Let G be a graph with edge set E(G). The Geometric/Arithmetic mean — edge Szeged Index of G,
denoted by G/A — Ed Sz(G) is defined to be

onti ey = Y AMEIOMEG) o MM EG)
e-wee ) (M, (€/G)+m,(e/G)) /2 . iF (M, (e/G)+m,(e/C)

Convention 1.8: When there is only one graph under consideration instead of (e/G) we write (e) only.
82. Results Related to Standard Graphs:

Theorem 2.1: For the complete graph K, (n > 2),

2
() EdSzK,)= ”(”_1)2(”_2) ;
n(n-1)

2

(i)  GIA—EdSz(K,) =

Proof: Lete =uv € E(K,).

By definition, d(u, &) =0 =d(v, &) =>e & my(e) U my(e).

Letf=uy e E(K,) withy #v. Nowd(u,f)=0<1=d(v,f) = u € My(e).

Let f=xy where x, y & {u, v}. Nowd(u, f) =1 =d(v,y) =Ff & mye) U my(e).
= my(e) =[My(e)| =d(u) -1=(n-1)-1=(n-2).

Similarly, m(e) = (n-2).

o . n(n-1)
This is true for all the edges of K. Since K, has > edges
Follows that
Ed-Sz(K,) = Y. (n-2)(n-2)
eeE(K,)

= |E(K,)|(n-2)

:@ (n-2)%
Since my(e) = my(e), follows that Z—M)m’@)=1.
m, (e)+m,(e)

Hence G/A — Ed Sz(K,) = Z 1

ecE(K,)

= [E(K0)|
_n(n-1)
==
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Theorem 2.2: For the complete bipartite graph Ky, , (m, n > 1),
M Ed-Sz(Km, n) =(M-1)(n—-1) mn;

(i) GIA — Ed Sz(Kp, o) = 2%

(whenever m+n > 3).
m+n-—2

(Observe that these are 0 when atlest one of m, n is 1)

Proof: Since Ky ; = K, the first result is trivial when m = n = 1. We will not consider the 2" one since the
requirement is m+n > 3.

Let m+n > 3 such that one of m, n is 1. Without loss of generality we can assume that m=1 and => n > 2. Now any
edge of Ky is of the form uv; (j =1, ..., n). Denote g; = uv;. Fix j.

Since d(u, &) = 0 = d(v, g;) follows that &; & My(ej) U My (g)).
Forjo € {1,2,...,n} — {j},

d(u, €,)=0=d(v; &,)=min{l, 2} =1=> €, € My(e).

So follows that my(e;) = (n—1) and M, (e)=0

= > mu(e)m(er)=0.

ecE(K1,n)

Hence Ed -S,(K,,) = 0.

«/ -10
Further G/A — Ed S,(Ky) =2 )| N(n-10 _ 0.

eeKin (n _l) + O

Now let m, n > 2.
Let (X, Y) be a partition of of the vertex set of Ky, n, where X = {uy, Up, ..., up}and Y = {vi, vy, ...,vp}.

Any edge of K, yis of the forme; ; = ujv; (i=1,2,..., m; j=1, 2,..., n). Since d(u;, &;;) = 0=d(v;, &;;) follows that
€ij & MUi (ei'j)U Mvj (ei,j) ............ (221)

Fix (i.j).

Consider the edge €.i, withjo € {1,2,...,n} —{]j}.

Since d(u;,€ ;) =0and d(v;,& ;) =Min{1,2} =1

follows that € ; €M, (& ;) oo (2.2.2)
Consider the edge €,_;with i, =1 .

Since d(u;,e; ;)= Min{1,2} = 1 and

d(v;.e ;) =0 followsthat & ; €M, (&;) .o (2.2.3)
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Consider the edge eio,ioWith I, 1andj, # J.

Now d(u;, e ;) =Min{2}=1and d(v;,e ;)=Min{l,2} =1

follows that &, , &M, (g ;)U M, (T (2.2.4)
From (2.2.1) - (2.2.4) follows that m, (g; ;) = (n—1) and m, (&,;)=(m-1).
This is true for all € ; e E(K ).

SoEd-Sz(Kmn)= D, m,(e)m,(e)

e=uveE(Kp )
=(n—-1)(m—1) [E(Kn,0)|
=(m-1)(n—1) mn.

Now, GIA—Ed St(Knp)= 3 N Tu(IM(E)
ceE(Ry) M, (8)+m, (e)

= 2—\4(m_1)(n_1)| E(K,.)|

m+n-—2

= 2—‘4(m_1)(n_1)mn_

m+n-2
Thus the proof is complete.

Theorem 2.3: For the path P,, (n > 3),
(n-1)(n-2)(n-3)
5 ;

(i) Ed-Sz(P,) =
(i) G/A-Ed SZ(Pn)—

—Zah(n 2-1) ZJI(I‘] 2—1) (with the convention, =0 when n=3).

(P, =K,and is conS|dered in Th.(2.1))

Proof: Let the vertex set of P, be V(P,) = {v4, V5, Vs, ..., vo}. The edges of P, are e; = V.V, , (i=1,2,...,n-1). We
observe that M, (e,)= M, (e,1)-

Further,
M (e) ={ey ...,e1}, fori=2,...,n-1and |V| (ei) ={ess ...,en1} fori=1,...,n-2
m, (e ) m, (e, l) ..(23.0)
( ):|—1f0r1 ...,n-1and
mvlﬂ(e):n—lfom— ., n-2.

So, Ed—Sz(Ps) = vai(ei)mv

> @)

=0+0=0( by (2.3.1))
= G/A-Ed Sz(P3) =0.

i+l
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Forn>4,

n-1
Ed-Sz(P,) = > m, (e)m, (&)
i=1

n—

N

= S (i-)(n-1-i)
i=2
n-3
= Y i(n—2—i) (Replacing i-1 by i)
= n-3 n-3
=(n-2) Y i-Y i
i=1 i=1

_(h=2)(n-3)(n-2) (n-3)(n—2)(2n-5)
2 6

- =202 5n-2)- (2n-9)

_ (n=1)(n-2)(n-3)
= - _

iz m,(e)+m, (&)

, 22 ﬂ_f(i “D(n-1-1i)

(i-D)+(n-1-1)
2 B . -
_E; i(n—2—i)

This completes the proof of the theorem.

Theorem 2.4: For the cycle C,, (n> 3),

2
(g—lj n ifniseven,
~ Ed-Sz(C,) = e
® {E} N ifnisodd.

(i) GIA—Ed Sz(C,)=n.

Proof :Let n> 3 and the vertex set of C,, i.e V(C,) = {Vl,v2 , ...,Vn} .

Case(a): Let n be even and = 2m (m > 2).
The edges of C,, are e; = vjviq (i = 1, ..., 2m) with the convention V.1 = V. Now
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M, (&) ={enii1r Comis} = m, (&)=(m-1)
and
|\/|\,i+1 e)={e...&.01 i1 }=> m, . (e)=(m-1)

(The edges e; and €,,,; are missing in the enumeration)

with the convention e, = ey.o, for 2m+1 <k <4m-1.
So

Ed -Sz(C,) = i m, (&)m, (&)

2
=(m—1)22m:(g—1) n
Since m, (&) =m, (&) for all ie{l?2,...,2m}, we have
2m
G/A-Ed Sz(C,)=) 1=2m=n.
i=1

Case(b): Let n be odd and =2m + 1(m > 1).

The edges of exmer are € = Viviug (i =1, ..., 2m+1) with the convention vym+ =Vi. Now

MVi (ei) :{em+i+l’ Cnsizares eZeri}:> n\/i (ei) =Mm

and
M, (&)={e.1,6.z k=M, (&)=m.
(The edge e is missing in the enumeration)

with the convention ey = ey omsy for 2m+2 <k < 4m+1.
So

2m+1

Ed -Sz(C,,.,) = Z m, (ei)mvm (e)

= m*(2m+1) :B} n.

As in case (a)
2m+1

G/A-Ed Sz(C,,,) = D 1=(2m+1) =n.
i=1

This completes the proof of the theorem.
Theorem 2.5: For the wheel K; V C,, (n > 3),

2
{(g) +4n-10}n when n is even,

2
{E} +10E} —5}n when n is odd.

(i) Ed-Sz(K, V C,) =

ISSN: 2249-2615 http://www.ijpttjournal.org

Page 6



International Journal of P2P Network Trends and Technology (IJPTT) — Volume 5 Issue 5 September to October 2015

{ 2\/_ \/Zn }n when n is even,

(2n-3)

(ii) G/A-Ed Sz(K, V C,) = Zf /
n when n is odd.
H -1)
CE

Proof: Let V(K;) = {uo} and V(Cn) {v1, Vo,...,Vn}-

Now E(K; VC,) ={upvi:i=1,2,....,n} u{vivis1 : i=1,2,....n}
(with the convention v, = v4).

Case(i): Let n be even. So we can write n=2m (m > 2)

Denote e; = vjviy, and f; = upv; fori=1,2,....2m.

Now, M (e'):{ m+i+1?" e2m+i l}U{ }:mv(e):m
M (e) {H—l’ i+2°" m+| l}U{f|+l}:>mv (e) m.

(Wlth the convention ey = ey, for 2m+1 <k <4m-1)
and

M, (f)={f;:ieN,, —{HUfe;:jeN, ~{i-2i-1i,i+1}
=M, (f,)=(@m-1) + (2m-4) = 4m-5

(with the convention ey = €5, €1 = €21, .2 = €om-2, €2m+1 = €1)
and

M, (f)={e.e.}=M, (f)=2

So
Ed-Sz(K; V C,)= Zm (e)m, (e)+2m (fm, (f)

i=1

2
= m%(2m) + (4m-5)2(2m) = (m?*+8m-10)2m = [(gj +4n —10] n.

GIA- Ed Sz(K, V C,) = Zl+z ,:2(4m-5)

= (2 +4m— 5)
s
Case(b): Let n be odd. So we can write n =2m+1 (m > 1).

Denote e; = vjvi,q and f; = upv; for i=1,2,...,2m+1).
As in case ( b) of Th.(2.4 ) and proceeding as in case (a), we get that

m, (&)=m+1=m, (&)
(with the convention ey = egom+1 for 2m+2 <k <4m)
and

m, (f)=0@m+1-)+(2m+1-4)=4m-3 and m, (f;)=2
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(with the convention e = €xm+1, €1 = €2m, €-2 = €om-1, €2ms2 = €1y,
So

2m+1 2m+1

Ed-Sz(Ky v Comer) =, M, (€)M )+ > m, (fm, ()
i=1 i=1

= (ml+1)2(2m+1) + 2(4m-3)(2m+1)
= (m? + 10m — 5)(2m+1)

[tz

2m+1 2m+1 2 4 _
G/A-Ed Sz(Ky v Coni) = D142 y2(4m—3)

i1 iz 2+(4m-3)

- 2m+1)+ 2203 o

(4m-1)

}(2m+1)

_ 1+2 2(4m-3)
dm-1

22 (4{”} -3
2
1+ - n.
@50

This completes the proof of the theorem.

83. Results Related to Tensor product of standard Graphs:
Theorem 3.1: For any integer n > 3,

i) Ed-Sz(K; A K,) = 4n (n-1) (n-2)%,

i) G/A - Ed Sz(K; a K;) = n(n-1).

Proof: By Result (1.3), it follows that K, a K, is connected and bipartite.
Let V(K3) = {ug, u}; V(K,) = {Vv1, Va,...,vn}. Now, the vertex set of K, A K;, is {uj, v} 1 1=1,2 ;

j=1,2,...,n and the edge set E(K, A K,) is the set of elements of the form (ul,vj)(uz,vj, )L, 1<j=] <n

A bipartition of V(K; A K, ) is {X, Y} where X ={(us, vj) :j=1,2,...,n}and Y = {(up, v): j = 1,2,....,n}.
A diagrametic representation of K, a K, is the following.

(ug, vy1) (ug, Vo) (ug, Vi)

(U2, V2)

Considerthe edge e = (uy, Vi)(Uxvy).
Since d((ug, v1), €) =0 =d((uy, vy), €),

it follows that ‘e’ isnotin M, ,,(e) aswellasin M, . (e) ... (3.1.1)

Forj=3,...,n, denote ¢; = (U, V1)(Uz, Vj).
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Since d((uy, v41), &) = 0 and d((uy, v2), &) = min{1, 2} =1, follows that
ee M, ,,(€) for j=3,..,n ... 3.1.2)

For j=3,...,n, denote e = (U1 v2)(uz vj)

d((u,v,),e;)=1and d((u,,v,),e;) =min{3.2} =2,

follows that €;, € M, ,,(e) forj=3,..n ... (3.1.3).

Since d((ug,vy), (Ug,V2)(Us,v1) = 2 = d((ug,V2), (U1.V2)(U,,Vy), follows that

(ULV)(Uzva) is notin My, (e) aswell as in M, v,) (e) . ceen(3.1.4).
forj=3,...,n,

since d((Uy, V1), (Us, V;)(Uz, V2) = 1 and d((Uz,V2), (U,V;)(Uz,V2)) =0,

Follows that (U,,V;)(U,,V,) € M, ,,(€) ........ (3.1.5).

Since d((uy,va), (U1,Vs)(Uz,v1) = 3 and d((uy, Vo), (U, Vj)(Uz,v1) ) = 1

follows that (U,,V;)(U,,v;) € M, ,,(€) ........ (3.1.6)

for j,j € {3,...n}andj = j.

Since d((u;, V), (W, V;)(U,,v;) =1=d((u,,V,), (U, V;)(U,,V;) follows that

this edge (U, V;)(U,,V;) isnotin M, (€) aswellasin M, . (€) ....... (3.1.7).

Uy, 1)

From (3.1.1) - (3.1.7). it follows that M, ,.,(€) =2(n-2)= M, ,,(€) ......... (3.1.8).

Since K, A K, is symmetric with respect to all the edges, it follows that for any edge of K, a K, , we get the same
values as in (3.1.8).

Therefore, Ed-Sz(K, A K,) = Z 2(n—2)2(n-2)

ecE(K,AK )
=4(n-2)*n(n-1)
=4n(n-1)(n—-2)°.
Since My, ,,(€) =m ,(e),itfollows that
G/IA—Ed Sz(K; A Kp) = |V (K,AK,)) |=n(n-1).
This completes the proof of the Theorem.
Remark 3.2: Observe that K, AK,=C,. Now by Theorem (3.1), Ed-Sz( K , AK;) = 4.3(1)> = 24 and by

2
Theorem (2.4), Ed-Sz(Kg) = (g - j .6 =46=24

Theorem 3.3: For the integers m, n > 3
(i) Ed-Sz(Kp a Ky) = 2mn (m-1)(n-1) [(m-1)(n-1)-1]%

(i) GIA-Sz(Ky A Ky)= % mn(m-21)(n-1).

Proof: Let V(Ky,) = {uy, Uy,...,un} and V(K,) = {vy, Va,...,vn}.

Now V(Kn A Kp) ={(ui, vj) :i=1,2,...m;j=1.2,....n}.

E(Kn A Ke) ={(U,V))(Uy,V;) 1< i<V <mil< j< j'<nf.

Clerarly (Kma Kp)is
a connected, m-bipatite graph with partition {Xy, ....,.Xn}, where X; = {(u;, vj):j=1,2,...,n}.

. . . 1
Further (see Result(1.3)) it is (m-1)(n-1)-regular with mn vertices and > mn(m—1)(n—1) edges .
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Since the graph is symmetric with regard to each edge, in the usual notation m, ,(€) and m, . ,(€)are the
iV iV

same for all the edges ‘e’ of K A K.
So, we calculate these for the edge e = (ug, v1)(U,, Vs).
As in Theorem(3.1), it follows that

M(ulyvl)(e) :{(ul,vl)(uz,vj): | :3,...,n}U
{(ul,vl)(ui,vj):i=3,...,m; j :2,...,n}U
{(ul,vz)(uz,vj): j=3,..., n}U
{(uz,vj)(ui,vz):i:3,...,m; J :1,3,...,n}

= My, v €e=mn-2)+(m-2)(n-D)+(n-2)+(m-2)(n-1)

=2(n-2) + 2(m-2)(n-1)
Z2L(M-1)(N-1) = 1] ceeeeii e 3.3.1)

and
M, (€)= { (U, V) (U, v) 11 =3,..,m, j=2,3}U

{(uyv3)(u,.vy)j=1,23U
(W) Uvy): j=4n, j =1,2}U
{,v)U,v):i=3,...m, j=4,..n} U
{(uz,vz)(ui,vj):i:3,...,m; J :1,3,...,n}

(with the convention that third and fourth sets are ¢ when n = 3).
=My, ., (€)= 2(m-2)+2+2(n-3)+(m-2)(n-3)+(m-2)(n-1)
= 2[(m-1)(n-1)-1].
Now
Ed-Sz(KmaKy) = D>, My, €)M, (€
ecE(KnAK,) o o

=4 [(m-1)(n-1) - 1]* [E(Kma Ky)|

=2 mn (m-1)(n-1) [(m-1)(n-1) — 1]
Since m, ,,(€)= m ., ,(e), it follows that

G/A-Ed Sz(K,AK))= >’ 1=1mn(m—1)(n—1).
ecE(K,AK,) 2
This completes the proof of the theorem.

Theorem 3.4: In the usual notation

(i) Ed-Sz(Csa C,) =2 (3) (4) (3+4)? = (24) (49) = 1176.

(ii) G/A-Ed Sz(C3 A Cy) =2 (3)(4) = 24.
Proof: Let V(Cs3) = {uy, Uy,us} and V(C,) = {vy, Vo, V3,V4}. SoV(C3aCy)
={(u, v :1=123;j=1,23,4}. By Results (1.4) &(1.5) , (C; a C,) is a connected, bipartite,4-regular graph with
12 vertices and 24 edges. A bipartition of the vertex set of C3 AC,is {X,Y} where X = {(u;, vj) :1=123;j=
1,3}and Y = {(u;, vj) : i1 =1,2,3; j = 2,4}. We observe that the graph is symmetric with regard to each edge. So, for
any edge e=(u,v) (u',v) of CsaCys My, (€) and mg, . (€) are the same. Hence, we calculate

these for e = (uy, vi)(Uy, V). As in Theorem (3.1) ,
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M g, (8) = { (U, V1) (U, V) U
(W, v)(u,v,)1=2,31U
(00009 1=2.40
00 =24
= m(u1,v1)(e) =1+2+2+2=1T.
M 1,y (€) = { (U3, V3) (U, V,) U
{(Us V) (U, V) U
(U V(U v,) i =1,21U
(U3 V) (U3 V) 11 =1, 2 U (U, Vo) (., )

=>my.,,(€)=1+1+2+2+1=7.
Hence,
Ed-Sz(C,AC,) = Y. (D)
ecE(czAc,)
= (3+4)* (2)(3)(4) = 1176.
Since, M, ,,,(€) = m . ,(e), it follows that
G/A-Ed Sz(C,AC,)= > 1 =2(3)(4)=24
ecE(c3Ac,)
This proves the theorem.

A diagrammatic representation of C3 * C, is

(ug, v1) (Ug, va) (U2, V1) (U2, V3) (Us, va) (us, v3)

(us, Vo)

Now, we end this paper with the following:

In view of Results (1.4) & (1.5), we have the following:
Open Problem 3.5: m, n > 3 and one of m, n is odd, what are the values of Ed-Sz(C,aC,) and G/A — Ed Sz(C,AC,)
?

References:

[1] Bondy J.A. and Murthy U.S.R., Graph Theory with Applications, North Holand, New York, 1976.

[2] G. H. Fath-Tabar, B. Fortula and I. Gutman, A new gemetricarthimetic index, J. Math. Chem., (2009) DOI:10.1007/s10910-009-9584-7.

[3] Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph theory Notes, New Y ork, 27, (1994),
9-15.

[4] Rao I.H.N. and Sarma K.V.S., On Tensor Product of Standard Graphs, International Jour. of Computational Cogination, 8(3), (2010), 99-103.

[5] Sampath Kumar, E., On Tensor Product Graphs, International Jour. Aust. Math. Soc., 20 (Series) (1975), 268-273.

[6] Wiener, H., Structural Determination of Paraffin Boiling Points, Jour. Amer. Chemi. Soc., 69 (1947), 17-40.

ISSN: 2249-2615 http://www.ijpttjournal.org Page 11




International Journal of P2P Network Trends and Technology (IJPTT) — Volume 5 Issue 5 September to October 2015

!Assistant Professor 2 Sr.Professor 3Sr.Facaulty

Department of Mathematics Department of Mathematics Department of Mathematics

Gayatri Vidya parishad college for Degree and P.G Courses, G.V.P. & LIAS Delhi Public School
School of Engineering, Rushikonda,

Visakhapatnam,Andhra Pradesh, India Visakhapatanam-530045A.P, India Hyderabad, India

ISSN: 2249-2615 http://www.ijpttjournal.org Page 12




