# On Edge-Szeged & G/A Edge-Szeged Index of Standard Graphs

K.V.S. Sarma<sup>1</sup> & I.H. Nagaraja Rao<sup>2</sup>, I.V.N.Uma<sup>3</sup>

<sup>1</sup>Assistant Professor, <sup>2</sup>Sr. Professor, <sup>3</sup>Senior Facaulty,

<sup>1</sup>Assistant Professor, <sup>2</sup>Sr. Professor, <sup>3</sup>Senior Facaulty, <sup>1</sup>Gayatri Vidya Parishad college for Degree and P.G. Courses, School of Engineering, Visakhapatnam, India <sup>2</sup>Gayatri Vidya Parishad Lakshmikamtam Institute of Advanced Studues, Visakhapatnam, India <sup>3</sup>Delhi Public School, Hyderabad, India

**Abstract:** Wiener Index (see [6]) is the first topological index based on graph-distances. The next significant index is due to Gutman (see [3]) based on the nearity of vertices relative to the edges of the graph. Further, the Geometric/Arthimetic – mean index corresponding to the Wiener index (see [2]) is also considered. The present work is an analogue to edges.

**Keywords:** Szeged Index, G/A – Szeged index, edge Szeged index and G/A – edge Szeged index.

### §1.Introduction and Basic Results:

Throughout this paper, by a graph we mean a non-empty, finite, simple and connected one. Chemical graphs are the graph-based descriptions of molecules where atoms are represented by vertices and bonds by edges. The association of a non-negative real number to a graph G is called a 'topological index' of G. These indices have significant applications to the graphs associated to the molecular structure of a chemical compound (designated as molecular graphs).

For the standard notation and results we refer Bondy & Murthy ([1]).

For ready reference, we give the following.

**Definition 1.1([5]):** G, H are disjoint graphs. The Tensor product of G and H, denoted by  $G \cap H$  (that is isomorphic to  $H \cap G$ ) is the graph whose vertex set is  $V(G) \times V(H)$  and the edge set being the set of all edges of the form  $(u, v) (u^1, v^1)$  where  $u, u^1 \in V(G), v, v^1 \in V(H), uu^1 \in E(G)$  and  $vv^1 \in E(H)$ .

**Result 1.2** [ 5 ]:  $G_1$ ,  $G_2$  are connected graphs. Then  $G_1 \cap G_2$  is connected if and only if (iff) either  $G_1$  or  $G_2$  contains an odd cycle.

**Result 1.3** [ **4** ]: For m,  $n \ge 2$ ,  $K_m \land K_n$  (isomorphic to  $K_n \land K_m$ ) is a simple, finite and -regular graph with mn vertices and  $\frac{1}{2}$  mn (m-1)(n-1) edges. Further it is

(a) bipartite only when one of m, n is 2 (b) connected when at least one of m, n is  $\geq 3$ .

**Result 1.4 [4]:**  $C_m \wedge C_n$  is a simple, 4 – regular graph with mn vertices and hence 2mn edges.

**Result 1.5:** For m,  $n \ge 3$ ,  $C_m \land C_n$  is a bipartite graph iff at least one of m, n is even.

To discuss about edge analogues, we first introduce the following:

**Definition 1.6:** Let G be a graph with edge set E(G). Then the edge Szeged Index of G, denoted by Ed-Sz(G) is defined to be

$$\sum_{e=uv\in E(G)} m_u(e/G)m_v(e/G) \text{ where }$$

 $M_u(e/G) = \{ f \in E(G) : d(u, f) < d(v, f) \},$ 

$$M_v(e/G) = \{f \in E(G) : d(v, f) < d(u, f)\};$$

$$m_u(e) = |M_u(e)|$$
,  $m_v(e) = |M_v(e)|$  ('||' denotes the cardinality)

and

if f=xy, then

$$d(u, f) = Min\{d(u, x), d(u, y)\}\ and\ d(v, f) = Min\{d(v, x), d(v, y)\}.$$

**Definition 1.7:** Let G be a graph with edge set E(G). The Geometric/Arithmetic mean – edge Szeged Index of G, denoted by G/A - Ed Sz(G) is defined to be

G/A - Ed Sz(G) = 
$$\sum_{e=uv \in E(G)} \frac{\sqrt{m_u(e/G)m_v(e/G)}}{(m_u(e/G) + m_v(e/G))/2} = 2\sum_{e=uv \in E(G)} \frac{\sqrt{m_u(e/G)m_v(e/G)}}{m_u(e/G) + m_v(e/G)}.$$

**Convention 1.8:** When there is only one graph under consideration instead of (e/G) we write (e) only.

# §2. Results Related to Standard Graphs:

**Theorem 2.1:** For the complete graph  $K_n$  ( $n \ge 2$ ),

(i) Ed-Sz(K<sub>n</sub>) = 
$$\frac{n(n-1)(n-2)^2}{2}$$
;

(ii) 
$$G/A - Ed Sz(K_n) = \frac{2}{n(n-1)}.$$

**Proof:** Let  $e = uv \in E(K_n)$ .

By definition,  $d(u, e) = 0 = d(v, e) \implies e \notin m_u(e) \bigcup m_v(e)$ .

Let  $f = uy \in E(K_n)$  with  $y \neq v$ . Now  $d(u, f) = 0 < 1 = d(v, f) \implies u \in M_u(e)$ .

Let f = xy where  $x, y \notin \{u, v\}$ . Now  $d(u, f) = 1 = d(v, y) \implies f \notin m_u(e) \bigcup m_v(e)$ .

$$\implies m_u(e) = |M_u(e)| = d(u) - 1 = (n-1) - 1 = (n-2).$$

Similarly,  $m_v(e) = (n-2)$ .

This is true for all the edges of  $K_n$ . Since  $K_n$  has  $\frac{n(n-1)}{2}$  edges

Follows that

Ed-Sz(K<sub>n</sub>) = 
$$\sum_{e \in E(K_n)} (n-2)(n-2)$$
  
=  $|E(K_n)| (n-2)^2$ 

$$=\frac{n(n-1)}{2}$$
 (n-2)<sup>2</sup>.

Since 
$$m_u(e) = m_v(e)$$
, follows that  $2\frac{\sqrt{m_u(e)m_v(e)}}{m_u(e) + m_v(e)} = 1$ .

$$\begin{aligned} \text{Hence } G/A - Ed \; Sz(K_n) &= \sum_{e \in \mathit{E}(K_n)} 1 \\ &= |E(K_n)| \\ &= \frac{\textit{n}(\textit{n}-1)}{2}. \end{aligned}$$

**Theorem 2.2:** For the complete bipartite graph  $K_{m,n}$   $(m, n \ge 1)$ ,

(i) 
$$Ed\text{-}Sz(K_{m, n}) = (m-1)(n-1) \text{ mn };$$

(ii) 
$$G/A - Ed Sz(K_{m, n}) = 2 \frac{\sqrt{(m-1)(n-1)}}{m+n-2}$$
 (whenever m+n \ge 3).

(Observe that these are 0 when at lest one of m, n is 1)

**Proof:** Since  $K_{1,\,1}=K_2$  the first result is trivial when m=n=1. We will not consider the  $2^{nd}$  one since the requirement is  $m+n\geq 3$ .

Let  $m+n \ge 3$  such that one of m, n is 1. Without loss of generality we can assume that m=1 and  $=> n \ge 2$ . Now any edge of  $K_{1,n}$  is of the form  $uv_i$  (j = 1, ..., n). Denote  $e_i = uv_i$ . Fix j.

Since  $d(u, e_i) = 0 = d(v, e_i)$  follows that  $e_i \notin M_u(e_i) \cup M_{u_i}(e_i)$ .

For  $j_0 \in \{1, 2, ..., n\} - \{j\},\$ 

$$d(u, e_{j_0}) = 0 = d(v_j, e_{j_0}) = \min\{1, 2\} = 1 \Longrightarrow e_{j_0} \in M_u(e_j).$$

So follows that  $m_u(e_j) = (n-1)$  and  $m_{v_i}(e_j) = 0$ 

$$\Rightarrow \sum_{e \in E(K_{1,n})} m_u(e_j) m_v(e_j) = 0.$$

Hence Ed  $-S_z(K_{1,n}) = 0$ .

Further G/A – Ed 
$$S_z(K_{1,n}) = 2 \sum_{e \in K_{1,n}} \frac{\sqrt{(n-1)0}}{(n-1)+0} = 0.$$

Now let m,  $n \ge 2$ .

Let (X, Y) be a partition of the vertex set of  $K_{m,n}$ , where  $X = \{u_1, u_2, ..., u_m\}$  and  $Y = \{v_1, v_2, ..., v_n\}$ .

Any edge of  $K_{m,n}$  is of the form  $e_{i,j} = u_i v_j$  ( i = 1, 2, ..., m; j = 1, 2, ..., n). Since  $d(u_i, e_{i,j}) = 0 = d(v_j, e_{i,j})$  follows that  $e_{i,j} \notin M_{u_i}(e_{i,j}) \bigcup M_{v_i}(e_{i,j})$ .....(2.2.1)

Fix (i,j).

Consider the edge  $e_{i,j_0}$  with  $j_0 \in \{1, 2, ..., n\} - \{j\}$ .

Since 
$$d(u_i, e_{i,j_0}) = 0$$
 and  $d(v_j, e_{i,j_0}) = Min\{1,2\} = 1$ 

follows that 
$$e_{i,j_0} \in M_{u_i}(e_{i,j})$$
 .....(2.2.2)

Consider the edge  $e_{i_0,j}$  with  $i_0 \neq i$ .

Since 
$$d(u_i, e_{i_0, j}) = Min\{1, 2\} = 1$$
 and

$$d(v_j, e_{i_0, j}) = 0$$
 follows that  $e_{i_0, j} \in M_{v_i}(e_{i, j})$  .....(2.2.3)

Consider the edge  $e_{i_0,i_0}$  with  $i_0 \neq i$  and  $j_0 \neq j$ .

Now 
$$d(u_i, e_{i_0, j_0}) = Min\{2, 1\} = 1$$
 and  $d(v_j, e_{i_0, j_0}) = Min\{1, 2\} = 1$ 

follows that 
$$e_{i_0,j_0} \notin M_{u_i}(e_{i,j}) \bigcup M_{v_j}(e_{i,j})$$
 .....(2.2.4)

From (2.2.1) - (2.2.4) follows that 
$$m_{u_i}(e_{i,j}) = (n-1)$$
 and  $m_{v_i}(e_{i,j}) = (m-1)$ .

This is true for all  $e_{i,j} \in E(K_{m,n})$ .

So Ed – Sz(K<sub>m, n</sub>) = 
$$\sum_{e=uv \in E(K_{m,n})} m_u(e) m_v(e)$$
=  $(n-1)(m-1) |E(K_{m,n})|$ 
=  $(m-1) (n-1) mn$ .

Now, G/A - Ed Sz(K<sub>m,n</sub>) = 
$$\sum_{e \in E(K_{m,n})} \frac{2\sqrt{m_u(e)m_v(e)}}{m_u(e) + m_v(e)}$$
$$= 2\frac{\sqrt{(m-1)(n-1)}}{m+n-2} |E(K_{m,n})|$$
$$= 2\frac{\sqrt{(m-1)(n-1)}}{m+n-2} mn.$$

Thus the proof is complete.

**Theorem 2.3**: For the path  $P_n$   $(n \ge 3)$ .

(i) Ed – Sz(P<sub>n</sub>) = 
$$\frac{(n-1)(n-2)(n-3)}{6}$$
;

(ii) 
$$G/A - Ed Sz(P_n) =$$

$$\frac{2}{n-2} \sum_{i=1}^{n-3} \sqrt{i(n-2-i)} \frac{2}{n-2} \sum_{i=1}^{n-3} \sqrt{i(n-2-i)}$$
 (with the convention, =0 when n=3).

 $(P_2 = K_2 \text{ and is considered in Th.}(2.1))$ 

**Proof:** Let the vertex set of  $P_n$  be  $V(P_n) = \{v_1, v_2, v_3, ..., v_n\}$ . The edges of  $P_n$  are  $e_i = v_i v_{i+1}$  (i=1, 2, ..., n-1). We observe that  $\mathbf{M}_{v_i} \left( e_1 \right) = \mathbf{M}_{v_n} \left( e_{n-1} \right)$ .

Further,

$$\begin{split} \mathbf{M}_{v_i}\left(e_i^{\phantom{i}}\right) &= \{e_{1,}\,...,\,e_{i\text{-}1}\},\,\text{for }i=2,\,...,\,\text{n-1 and }\mathbf{M}_{v_{i+1}}\left(e_i^{\phantom{i}}\right) = \{\,e_{i+1},\,...,\,e_{n\text{-}1}\}\,\,\text{for }i=1,\,...,\,\text{n-2}\\ &\Rightarrow\quad m_{v_{-1}}\left(e_1^{\phantom{i}}\right) = 0 = \,m_{v_n}\left(e_{n-1}^{\phantom{i}}\right) &\quad ...(2.3.1)\\ &\quad m_{v_i}\left(e_i^{\phantom{i}}\right) = i-1\,\,\text{for }i=2,\,...,\,\text{n-1 and}\\ &\quad m_{v_{i+1}}\left(e_i^{\phantom{i}}\right) = n-1\,\,\text{for }i=2,\,...,\,\text{n-2}\;. \end{split}$$

So, Ed – Sz(P<sub>3</sub>) = 
$$\sum_{i=1}^{2} m_{v_i}(e_i) m_{v_{i+1}}(e_i)$$
  
= 0 + 0 = 0 ( by (2.3.1))

$$\implies$$
 G/A - Ed Sz(P<sub>3</sub>) = 0.

For 
$$n \ge 4$$
,

$$\begin{split} \operatorname{Ed} - \operatorname{Sz}(\mathsf{P}_{\mathsf{n}}) &= \sum_{i=1}^{n-1} m_{v_{i}}(e_{i}) m_{v_{i+1}}(e_{i}) \\ &= \sum_{i=2}^{n-2} (i-1)(n-1-i) \\ &= \sum_{i=1}^{n-3} i(n-2-i) \text{ (Replacing i-1 by i)} \\ &= (\mathsf{n}-2) \sum_{i=1}^{n-3} i - \sum_{i=1}^{n-3} i^{2} \\ &= \frac{(n-2)(n-3)(n-2)}{2} - \frac{(n-3)(n-2)(2n-5)}{6} \\ &= \frac{(n-3)(n-2)}{6} [3(n-2) - (2n-5)] \\ &= \frac{(n-1)(n-2)(n-3)}{6} . \\ \operatorname{Ed} - \operatorname{Sz}(\mathsf{P}_{\mathsf{n}}) &= 2 \sum_{i=1}^{n-1} \frac{\sqrt{m_{v_{i}}(e_{i})m_{v_{i+1}}(e_{i})}}{m_{v_{i}}(e_{i}) + m_{v_{i+1}}(e_{i})} \\ &= 2 \sum_{i=2}^{n-2} \frac{\sqrt{(i-1)(n-1-i)}}{(i-1) + (n-1-i)} \\ &= \frac{2}{n-2} \sum_{i=1}^{n-3} \sqrt{i(n-2-i)} \\ . \end{split}$$

This completes the proof of the theorem.

**Theorem 2.4:** For the cycle  $C_n$   $(n \ge 3)$ ,

(i) 
$$\operatorname{Ed-Sz}(\mathbf{C}_{\mathbf{n}}) = \begin{cases} \left(\frac{n}{2} - 1\right)^{2} n & \text{if n is even,} \\ \left[\frac{n}{2}\right]^{2} n & \text{if n is odd.} \end{cases}$$

(ii)  $G/A - Ed Sz(C_n) = n$ .

**Proof**: Let  $n \ge 3$  and the vertex set of  $C_n$ , i.e  $V(C_n) = \{v_1, v_2, ..., v_n\}$ .

Case(a): Let n be even and =  $2m (m \ge 2)$ .

The edges of  $C_{2m}$  are  $e_i = v_i v_{i+1}$  (i = 1, ..., 2m) with the convention  $v_{2m+1} = v_1$ . Now

$$M_{v_i}(e_i) = \{e_{m+i+1}, ..., e_{2m+i-1}\} \Longrightarrow m_{v_i}(e_i) = (m-1)$$

and

$$M_{v_{i+1}}(e_i) = \{e_{i+1}, e_{i+2}, ..., e_{m+i-1}\} \Rightarrow m_{v_{i+1}}(e_i) = (m-1)$$

(The edges  $e_i$  and  $e_{m+i}$  are missing in the enumeration)

with the convention  $e_k = e_{k-2m}$  for  $2m+1 \le k \le 4m-1$ .

So

$$Ed - Sz(C_n) = \sum_{i=1}^{2m} m_{v_i}(e_i) . m_{v_{i+1}}(e_i)$$
$$= (m-1)^2 2m = \left(\frac{n}{2} - 1\right)^2 n$$

Since  $m_{v_i}(e_i) = m_{v_{i+1}}(e_i)$  for all  $i \in \{1, 2, ..., 2m\}$ , we have

$$G/A-Ed\ Sz(C_n) = \sum_{i=1}^{2m} 1 = 2m = n.$$

Case(b): Let n be odd and =  $2m + 1 (m \ge 1)$ .

The edges of  $e_{2m+1}$  are  $e_i = v_i v_{i+1}$  (i = 1, ..., 2m+1) with the convention  $v_{2m+2} = v_1$ . Now

$$M_{v_i}(e_i) = \{e_{m+i+1}, e_{m+i+2}, \dots, e_{2m+i}\} \Rightarrow m_{v_i}(e_i) = m$$

and

$$M_{v_{i+1}}(e_i) = \{e_{i+1}, e_{i+2}, ..., e_{m+i}\} \Longrightarrow m_{v_{i+1}}(e_i) = m.$$

(The edge e<sub>i</sub> is missing in the enumeration)

with the convention  $e_k=e_{k\text{-}(2m+1)}\;\;\text{for }2m+2\;\;\leq k\leq\;4m+1$  .

So

$$Ed - Sz(C_{2m+1}) = \sum_{i=1}^{2m+1} m_{v_i}(e_i) m_{v_{i+1}}(e_i)$$
$$= m^2 (2m+1) = \left[\frac{n}{2}\right]^2 n.$$

As in case (a)

$$G/A-Ed\ Sz(C_{2m+1})=\sum_{i=1}^{2m+1}1=(2m+1)=n.$$

This completes the proof of the theorem.

**Theorem 2.5:** For the wheel  $K_1 \vee C_n$   $(n \ge 3)$ ,

(i) Ed-Sz(K<sub>1</sub> V C<sub>n</sub>) = 
$$\begin{cases} \left(\frac{n}{2}\right)^2 + 4n - 10 \} \text{n when n is even,} \\ \left[\frac{n}{2}\right]^2 + 10 \left[\frac{n}{2}\right] - 5 \} \text{n when n is odd.} \end{cases}$$

$$\left\{1 + \frac{2\sqrt{2}}{(2n-3)}\sqrt{2n-5}\right\} \text{n when n is even,}$$
(ii) 
$$G/A - \text{Ed Sz}(K_1 \text{ V C}_n) = \left\{1 + \frac{2\sqrt{2}\sqrt{4\left[\frac{n}{2}\right]} - 3}{\left(4\left[\frac{n}{2}\right] - 1\right)}\right\} \text{n when n is odd.}$$

**Proof:** Let  $V(K_1) = \{u_0\}$  and  $V(C_n) = \{v_1, v_2, ..., v_n\}$ .

Now  $E(K_1 \ V \ C_n) = \{u_0v_i : i=1, 2, ..., n\} \ {}_{U} \ \{v_iv_{i+1} : i=1, 2, ..., n\}$ 

(with the convention  $v_{n+1} = v_1$ ).

Case(i): Let n be even. So we can write n=2m ( $m \ge 2$ )

Denote  $e_i = v_i v_{i+1}$  and  $f_i = u_0 v_i$  for i = 1, 2, ..., 2m.

Now, 
$$M_{v_i}(e_i) = \{e_{m+i+1}, ..., e_{2m+i-1}\} \cup \{f_i\} \Rightarrow m_{v_i}(e_i) = m$$
,

$$M_{v_{i+1}}(e_i) = \{e_{i+1}, e_{i+2}, \dots, e_{m+i-1}\} \cup \{f_{i+1}\} \Rightarrow m_{v_{i+1}}(e_i) = m.$$

(with the convention  $e_k = e_{k-2m}$  for  $2m+1 \le k \le 4m-1$ )

and

$$M_{u_0}(f_i) = \{f_j : j \in N_{2m} - \{i\}\} \cup \{e_j : j \notin N_m - \{i-2, i-1, i, i+1\}\}$$

$$\Rightarrow M_{u_0}(f_i) = (2\text{m}-1) + (2\text{m}-4) = 4\text{m}-5$$

(with the convention  $e_0 = e_{2m}$ ,  $e_{-1} = e_{2m-1}$ ,  $e_{-2} = e_{2m-2}$ ,  $e_{2m+1} = e_1$ )

$$M_{v_i}(f_i) = \{e_i, e_{i-1}\} \Rightarrow M_{v_i}(f_i) = 2.$$

So

Ed-Sz(K<sub>1</sub> V C<sub>n</sub>)= 
$$\sum_{i=1}^{2m} m_{v_i}(e_i) m_{v_{i+1}}(e_i) + \sum_{i=1}^{2m} m_{v_0}(f_i) m_{v_i}(f_i)$$
$$= m^2(2m) + (4m-5)2(2m) = (m^2 + 8m-10)2m = \left(\left(\frac{n}{2}\right)^2 + 4n - 10\right)n.$$

G/A- Ed Sz(K<sub>1</sub> V C<sub>n</sub>) = 
$$\sum_{i=1}^{2m} 1 + \sum_{i=1}^{2m} 2 \frac{\sqrt{2(4m-5)}}{(2+4m-5)}$$

$$= 2m + \frac{2\sqrt{2}\sqrt{4m-5}}{4m-3} 2m$$

$$= \left\{1 + \frac{2\sqrt{2}}{2n-3}\sqrt{2n-5}\right\}n.$$

Case(b): Let n be odd. So we can write n = 2m+1 ( $m \ge 1$ ).

Denote  $e_i = v_i v_{i+1}$  and  $f_i = u_0 v_i$  for i = 1, 2, ..., (2m+1).

As in case (b) of Th.(2.4) and proceeding as in case (a), we get that

$$m_{v_i}(e_i) = m+1 = m_{v_{i,i}}(e_i)$$

(with the convention  $e_k = e_{k-2m+1}$  for  $2m+2 \le k \le 4m$ )

 $m_{u_0}(f_i) = (2m+1-1)+(2m+1-4) = 4m-3$  and  $m_{v_i}(f_i)=2$ 

(with the convention  $e_0 = e_{2m+1}$ ,  $e_{-1} = e_{2m}$ ,  $e_{-2} = e_{2m-1}$ ,  $e_{2m+2} = e_{1)}$ .

Ed-Sz(K<sub>1</sub> v C<sub>2m+1</sub>) = 
$$\sum_{i=1}^{2m+1} m_{v_i}(e_i) m_{v_{i+1}}(e_i) + \sum_{i=1}^{2m+1} m_{u_0}(f_i) m_{v_i}(f_i)$$
=  $(m+1)^2 (2m+1) + 2(4m-3)(2m+1)$   
=  $(m^2 + 10m - 5)(2m+1)$   
=  $\left\{ \left[ \frac{n}{2} \right]^2 + 10 \left[ \frac{n}{2} \right] - 5 \right\} n$ 

$$G/A- \operatorname{Ed} \operatorname{Sz}(K_{1} \vee C_{2n+1}) = \sum_{i=1}^{2m+1} 1 + 2 \sum_{i=1}^{2m+1} \frac{\sqrt{2(4m-3)}}{2 + (4m-3)}$$

$$= (2m+1) + \frac{2\sqrt{2(4m-3)}}{(4m-1)} (2m+1)$$

$$= \left\{1 + \frac{2\sqrt{2(4m-3)}}{4m-1}\right\} (2m+1)$$

$$= \left\{1 + \frac{2\sqrt{2}\sqrt{(4\left[\frac{n}{2}\right] - 3}}{(4\left[\frac{n}{2}\right] - 1)}\right\} n.$$

This completes the proof of the theorem.

## §3. Results Related to Tensor product of standard Graphs:

**Theorem 3.1:** For any integer  $n \ge 3$ ,

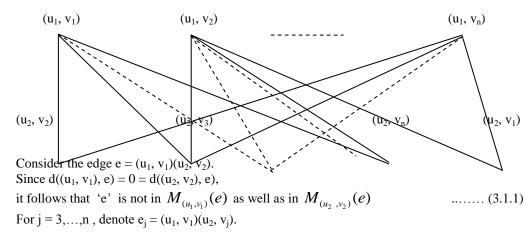
- i) Ed-Sz( $K_2 \wedge K_n$ ) = 4n (n-1) (n-2)<sup>2</sup>,
- ii)  $G/A Ed Sz(K_2 \wedge K_n) = n(n-1).$

**Proof:** By Result (1.3), it follows that  $K_2 \wedge K_n$  is connected and bipartite.

Let  $V(K_2) = \{u_1, u_2\}$ ;  $V(K_n) = \{v_1, v_2, ..., v_n\}$ . Now, the vertex set of  $K_2 \land K_n$  is  $\{u_i, v_j\} : i=1,2$ ;

j = 1, 2, ..., n and the edge set  $E(K_2 \land K_n)$  is the set of elements of the form  $(u_1, v_j)(u_2, v_{j'}), 1 \le j \ne j' \le n$ .

A bipartition of  $V(K_2 \wedge K_n)$  is  $\{X, Y\}$  where  $X = \{(u_1, v_j) : j = 1, 2, ..., n\}$  and  $Y = \{(u_2, v_j) : j = 1, 2, ..., n\}$ . A diagrametic representation of  $K_2 \wedge K_n$  is the following.



Since  $d((u_1, v_1), e_j) = 0$  and  $d((u_2, v_2), e_j) = \min\{1, 2\} = 1$ ,  $e_j \in M_{(u_1, v_1)}(e)$  for j=3,...,n .....(3.1.2)

follows that

For j = 3,...,n, denote  $e_{j'} = (u_1 \ v_2)(u_2 \ v_j)$ 

$$d((u_1, v_1), e_{i'}) = 1$$
 and  $d((u_2, v_2), e_{i'}) = \min\{3.2\} = 2$ ,

follows that  $e_{j'} \in \mathbf{M}_{(u_0,v_1)}(e)$  for j=3,...,n ......(3.1.3).

Since  $d((u_1,v_1), (u_1,v_2)(u_2,v_1) = 2 = d((u_1,v_2), (u_1,v_2)(u_2,v_1), \text{ follows that}$ 

 $(u_1.v_2)(u_2,v_1)$  is not in  $M_{(u_1,v_1)}(e)$  as well as in  $M_{(u_2,v_2)}(e)$ .

.....(3.1.4).

for j = 3,...,n,

since  $d((u_1, v_1), (u_1, v_j)(u_2, v_2) = 1$  and  $d((u_2, v_2), (u_1, v_j)(u_2, v_2)) = 0$ ,

Follows that  $(u_1, v_j)(u_2, v_2) \in M_{(u_1, v_2)}(e)$  ......(3.1.5).

Since  $d((u_1, v_1), (u_1, v_5)(u_2, v_1) = 3$  and  $d((u_2, v_2), (u_1, v_i)(u_2, v_1)) = 1$ 

follows that  $(u_1, v_j)(u_2, v_1) \in M_{(u_2, v_2)}(e)$  ......(3.1.6)

for j, j' 
$$\in \{3,...,n\}$$
 and j'  $\neq$  j.

Since  $d((u_1, v_1), (u_1, v_j)(u_2, v_{j'}) = 1 = d((u_2, v_2), (u_1, v_j)(u_2, v_{j'})$  follows that

this edge  $(u_1, v_1)(u_2, v_{j'})$  is not in  $\mathbf{M}_{(u_1, v_1)}(e)$  as well as in  $\mathbf{M}_{(u_2, v_2)}(e)$  ......(3.1.7).

From (3.1.1) – (3.1.7). it follows that 
$$\mathbf{M}_{(u_1,v_1)}(e) = 2(n-2) = \mathbf{M}_{(u_2,v_2)}(e)$$
 ......(3.1.8).

Since  $K_2 \wedge K_n$  is symmetric with respect to all the edges, it follows that for any edge of  $K_2 \wedge K_n$ , we get the same values as in (3.1.8).

Therefore, Ed-Sz(K<sub>2</sub> 
$$\wedge$$
 K<sub>n</sub>) =  $\sum_{e \in E(K_2 \wedge K_n)} 2(n-2)2(n-2)$   
=  $4(n-2)^2 n(n-1)$   
=  $4n(n-1)(n-2)^2$ .

Since  $m_{(u_1,v_1)}(e) = m_{(u_2,v_2)}(e)$ , it follows that

$$G/A - Ed Sz(K_2 \wedge K_n) = |V(K_2 \wedge K_n)| = n(n-1).$$

This completes the proof of the Theorem.

**Remark 3.2:** Observe that  $K_2 \Lambda K_3 = C_6$ . Now by Theorem (3.1), Ed-Sz( $K_2 \Lambda K_3$ ) = 4.3(1)<sup>2</sup> = 24 and by

Theorem (2.4), Ed-Sz(K<sub>6</sub>) = 
$$\left(\frac{6}{2} - 1\right)^2$$
.6 = 4.6 = 24.

**Theorem 3.3:** For the integers m,  $n \ge 3$ 

(i) Ed-Sz( $K_m \wedge K_n$ ) = 2mn (m-1)(n-1) [(m-1)(n-1)-1]<sup>2</sup>.

(ii) 
$$G/A-Sz(K_m \wedge K_n) = \frac{1}{2}mn(m-1)(n-1).$$

**Proof:** Let  $V(K_m) = \{u_1, u_2, ..., u_m\}$  and  $V(K_n) = \{v_1, v_2, ..., v_n\}$ .

Now  $V(K_m \wedge K_n) = \{(u_i, v_j) : i = 1, 2, ..., m ; j = 1, 2, ..., n\}.$ 

$$E(K_m \land K_n) = \left\{ (u_i, v_j)(u_{i'}, v_{j'}) : 1 \le i < i' \le m; 1 \le j < j' \le n \right\}.$$

Clerarly

 $(K_m \wedge K_n)$  is

a connected, m-bipatite graph with partition  $\{X_1, ..., X_m\}$ , where  $X_i = \{(u_i, v_j): j=1,2,...,n\}$ .

Further (see Result(1.3)) it is (m-1)(n-1)-regular with mn vertices and  $\frac{1}{2}mn(m-1)(n-1)$  edges.

Since the graph is symmetric with regard to each edge, in the usual notation  $m_{(u_i,v_j)}(e)$  and  $m_{(u_i,v_j)}(e)$  are the same for all the edges 'e' of  $K_m \wedge K_n$ .

So, we calculate these for the edge  $e = (u_1, v_1)(u_2, v_2)$ .

As in **Theorem(3.1)**, it follows that

and

$$\begin{split} M_{(u_2,v_2)}(e) &= \left\{ (u_1,v_j)(u_i,v_1) : i = 3,...,m, j = 2,3 \right\} \cup \\ &\quad \left\{ (u_1,v_3)(u_2,v_j) : j = 1,2 \right\} \cup \\ &\quad \left\{ (u_1,v_j)(u_2,v_{j'}) : j = 4...,n, j' = 1,2 \right\} \cup \\ &\quad \left\{ (u_1,v_j)(u_i,v_1) : i = 3,...,m, j = 4,...,n \right\} \cup \\ &\quad \left\{ (u_2,v_2)(u_i,v_j) : i = 3,...,m; j = 1,3,...,n \right\} \end{split}$$

(with the convention that third and fourth sets are  $\varphi$  when n = 3).

$$\Rightarrow m_{(u_2,v_2)}(e) = 2(m-2)+2+2(n-3)+(m-2)(n-3)+(m-2)(n-1)$$
= 2[(m-1)(n-1)-1].

Nov

Ed-Sz(K<sub>m</sub> 
$$\wedge$$
 K<sub>n</sub>) = 
$$\sum_{e \in E(K_m \wedge K_n)} m_{(u_1,v_1)}(e) m_{(u_2,v_2)}(e)$$
= 4 [(m-1)(n-1) - 1]<sup>2</sup> |E(K<sub>m</sub>  $\wedge$  K<sub>n</sub>)|
= 2 mn (m-1)(n-1) [(m-1)(n-1) - 1]<sup>2</sup>.

Since  $m_{(u_1,v_1)}(e) = m_{(u_2,v_2)}(e)$ , it follows that

$$G/A - Ed \operatorname{Sz}(K_{m} \Lambda K_{n}) = \sum_{e \in E(K_{m} \Lambda K_{n})} 1 = \frac{1}{2} mn(m-1)(n-1).$$

This completes the proof of the theorem.

**Theorem 3.4:** In the usual notation

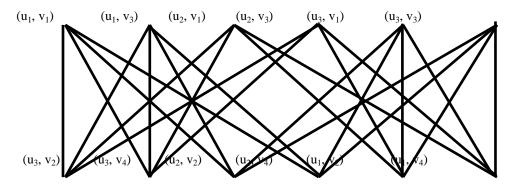
- (i) Ed-Sz(C<sub>3</sub>  $\wedge$  C<sub>4</sub>) = 2 (3) (4) (3+4)<sup>2</sup> = (24) (49) = 1176.
- (ii)  $G/A-Ed Sz(C_3 \wedge C_4) = 2 (3)(4) = 24.$

**Proof:** Let  $V(C_3) = \{u_1, u_2, u_3\}$  and  $V(C_4) = \{v_1, v_2, v_3, v_4\}$ . So  $V(C_3 \land C_4) = \{(u_i, v_j) : i = 1, 2, 3 ; j = 1, 2, 3, 4\}$ . By **Results (1.4) &(1.5)**,  $(C_3 \land C_4)$  is a connected, bipartite, 4-regular graph with 12 vertices and 24 edges. A bipartition of the vertex set of  $C_3 \land C_4$  is  $\{X,Y\}$  where  $X = \{(u_i, v_j) : i = 1, 2, 3; j = 1, 3\}$  and  $Y = \{(u_i, v_j) : i = 1, 2, 3; j = 2, 4\}$ . We observe that the graph is symmetric with regard to each edge. So, for any edge  $e = (u, v) (u^1, v^1)$  of  $C_3 \land C_4$ ,  $m_{(u,v)}(e)$  and  $m_{(u',v')}(e)$  are the same. Hence, we calculate these for  $e = (u_1, v_1)(u_2, v_2)$ . As in **Theorem (3.1)**,

$$\begin{split} M_{(u_1,v_1)}(e) &= \left\{ (u_1,v_1)(u_3,v_2) \right\} \cup \\ &\left\{ (u_1,v_1)(u_i,v_4) : i = 2,3 \right\} \cup \\ &\left\{ (u_2,v_1)(u_3,v_j) : j = 2,4 \right\} \cup \\ &\left\{ (u_2,v_3)(u_3,v_j) : j = 2,4 \right\}. \\ &\Rightarrow m_{(u_1,v_1)}(e) = 1 + 2 + 2 + 2 = 7. \\ M_{(u_2,v_2)}(e) &= \left\{ (u_1,v_3)(u_2,v_2) \right\} \cup \\ &\left\{ (u_3,v_1)(u_1,v_4) \right\} \cup \\ &\left\{ (u_3,v_1)(u_i,v_2) : i = 1,2 \right\} \cup \left\{ (u_3,v_3)(u_1,v_4) \right\} \\ &\Rightarrow m_{(u_2,v_2)}(e) = 1 + 1 + 2 + 2 + 1 = 7. \\ \text{Hence,} \\ Ed - Sz(C_3 \Lambda C_4) &= \sum_{e \in E(c_3 \Lambda c_4)} (7)(7) \\ &= (3+4)^2 (2)(3)(4) = 1176. \\ \text{Since,} \ m_{(u_1,v_1)}(e) &= m_{(u_2,v_2)}(e), \ \text{it follows that} \\ G/A - Ed \ Sz(C_3 \Lambda C_4) &= \sum_{e \in E(c_3 \Lambda c_4)} 1 = 2(3)(4) = 24. \end{split}$$

This proves the theorem.

A diagrammatic representation of C<sub>3</sub> ^ C<sub>4</sub> is



Now, we end this paper with the following:

In view of **Results** (1.4) & (1.5), we have the following:

**Open Problem 3.5:** m,  $n \ge 3$  and one of m, n is odd, what are the values of Ed-Sz( $C_m \land C_n$ ) and G/A - Ed Sz( $C_m \land C_n$ )

### **References:**

- [1] Bondy J.A. and Murthy U.S.R., Graph Theory with Applications, North Holand, New York, 1976.
- [2] G. H. Fath-Tabar, B. Fortula and I. Gutman, A new gemetricarthimetic index, J. Math. Chem., (2009) DOI:10.1007/s10910-009-9584-7.
- [3] Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph theory Notes, New York, 27, (1994), 9-15.
- $[4] \ Rao\ I.H.N.\ and\ Sarma\ K.V.S.,\ On\ Tensor\ Product\ of\ Standard\ Graphs,\ International\ Jour.\ of\ Computational\ Cogination,\ 8(3),\ (2010),\ 99-103.$
- [5] Sampath Kumar, E., On Tensor Product Graphs, International Jour. Aust. Math. Soc., 20 (Series) (1975), 268-273.
- [6] Wiener, H., Structural Determination of Paraffin Boiling Points, Jour. Amer. Chemi. Soc., 69 (1947), 17-40.

# International Journal of P2P Network Trends and Technology (IJPTT) - Volume 5 Issue 5 September to October 2015

<sup>1</sup>Assistant Professor <sup>2</sup> Sr.Professor <sup>3</sup>Sr.Facaulty
Department of Mathematics Department of Mathematics Department of Mathematics

Gayatri Vidya parishad college for Degree and P.G Courses, G.V.P. & LIAS Delhi Public School

School of Engineering, Rushikonda,

Visakhapatnam, Andhra Pradesh, India Visakhapatanam-530045A.P, India Hyderabad, India