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Abstract— The Wireless Sensor Network (WSN) is the one, 
which generally consists of cameras themselves, which have 
some local image processing, communication and storage 
capabilities, and one or more central computers, where image 
data from multiple cameras is further processed and fused. 
Here the computation resource is extremely limited. Because of 
these limitations, a new sampling method is introduced in the 
Image/video encoder of the WSN called Compressed Sensing 
(CS), which is the process of acquiring and reconstructing a 
signal that is supposed to be sparse or compressible, thus 
reducing the computational complexity. The image is divided 
into dense and sparse components [1], where the dense 
component uses the standard encoding procedure such as JPEG 
and the sparse measurements from the sparse components are 
encoded by the Arithmetic encoding. The correlation between 
the dense and sparse components is studied using the 
autoregressive model, by which the sparse components are 
predicted from the dense component at the receiver side. With 
the measurements (used in CS) and the predicted sparse 
components as the initial values, the projection onto convex set 
(POCS) recovery algorithm [2] is used to get back the original 
sparse components and hence the original image by applying 
the inverse of transform to the dense and recovered sparse 
components.  

 

Keywords-Compressed Sensing, JPEG, Arithmetic encoding, 
Image interpolation;PAR model, Variable adaptive interpolation, 
Projection onto Convex set. 

I. INTRODUCTION 
A wireless sensor network (WSN) is a collection of low-

cost, low-power sensor nodes that communicate in short 
distance and collaborate together to reach the objective of a 
WSN application. Some applications of WSN are 
environmental monitoring, biomedical research, human 
imaging and tracking and military applications. In cases 
where the number of samples is large, compression must be 
done prior to transmission. In these applications there are 
limitations on computational power of sampling devices or 
communication channel bandwidth. Therefore reducing the 
complexity and power consumption of the sensors is 
desirable, which can be accomplished by incorporating a new 
sampling technique called compressed sensing, which is a 
signal processing technique that takes advantage of the 
signal's sparseness or compressibility in some domain, 
allowing the entire signal to be determined from relatively 
few measurements.  

Emmanuel J. Candès and Michael B [3] explained that 
the use of CS theory can recover certain signals and images 
from far fewer samples or measurements than traditional 
methods of acquisition. This new sampling theory tries to 

combine procedures for sampling and compressing data 
simultaneously. Justin Romberg [5], whose article is an 
introduction to CS and recovery via convex programming, 
says about transforming the image into an appropriate basis 
and then coding only the important expansion coefficients. 

Candès E, Romberg J [2] explained that it is possible to 
reconstruct certain types of signals accurately from limited 
measurements. In a nutshell, suppose that f is compressible in 
the sense that it is well-approximated by a linear combination 
of M vectors taken from a known basis Ѱ. Then not knowing 
anything in advance about the signal, f can (very nearly) be 
recovered from only about M logN generic non-adaptive 
measurements. The recovery procedure is concrete and 
consists in solving a simple convex optimization program. 

In this paper, the image is decomposed into two 
components: dense and sparse. The decomposition helps to 
generate a sparser signal which is more suitable for CS. 
Furthermore, there exists a strong correlation between these 
two components because the decomposition is usually not 
completely orthogonal [1]. Following the decomposition, the 
dense component is transmitted as it is by standard encoding 
technique such as JPEG, whereas for the sparse components, 
only very few measurements are transmitted using 
Arithmetic encoding [12]. At the receiver side, the dense 
component received, is interpolated to obtain the super-
resolution image whose size will be equal to that of original 
image. Once the interpolation is done, the wavelet transform 
is applied to the interpolated image to obtain once again, the 
dense and sparse components. The sparse components are of 
only interest which will be used as the initialization for the 
POCS recovery algorithm along with the random 
measurements taken from the sparse components of the 
original image. The POCS recovery algorithm estimates the 
original sparse components in certain no of iterations [2]. 
The estimated sparse components along with the dense 
component are applied with inverse wavelet transform, to get 
back the original image. 

II. COMPRESSED SENSING 
As explained in the previous section, following the 

decomposition, the dense component is processed by 
traditional method and the sparse components by CS. If an 
N-dimensional signal could be represented sparsely in a 
certain transformed domain and if there are only K no of 
non-zero coefficients in the transformed domain (here 
wavelet transform is applied), then it would be enough to 
take a very few measurements say M which is much lesser 
compared to the no of measurements N, if there is no 
transformation applied [1]. The CS principle claims that the 
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sparse components can be recovered back from such a small 
number of random linear measurements [1].  

Suppose we have an N-dimensional signal  
           x ε RN,          (1) 

this could be represented sparsely in a certain domain by the 
transform matrix Ѱ, if there are only K non-zero coefficients 
in the Ѱ domain, that is, x is exactly K-sparse. Then there is 
no need to take N measurements when N>>K. 

In order to take CS measurements, we first let ɸ denote 
an M by N measurement matrix with M<<N, which obeys 
the restricted isometric property. The measurements are 
obtained by a linear system 

                   y =ɸ x             (2) 

the condition that M should satisfy is          

     NMConstK log*                          (3) 

where Const is the over-measuring factor greater than 1. In 
order to take measurements of the sparse components, a 
Gaussian random ensemble ɸ is used in this paper. The other 
measurement matrices generally used are Bernoulli random 
matrix and Sub-Gaussian random matrices. The entries of a 
random Bernoulli matrix take the value ±(m)^(-1/2) with 
equal probability, while the entries of a Gaussian matrix are 
independent and follow a normal distribution with 
expectation zero and variance (1/m), where m is the mean 
[13]. Whatever the type, the measurement matrix must 
satisfy the Restricted Isometric property. In essence, a matrix 
satisfying RIP is such that the lengths of all sufficiently 
sparse vectors are approximately preserved under 
transformation by the matrix [13].   

Since the dimension of the input image is very high, 
directly applying the 2D Gaussian random matrix ɸ to the 
sparse components is not practical. In order to apply the 
random matrix more efficiently, the sparse components are 
needed to be regrouped and a block based sampling strategy 
is followed. The sparse components are first divided into 
several groups by scaling and then reordering it into a 
number of vectors of the same dimension. In this way, 
random measurements to the vector with moderate size 
instead of the tremendous size can be taken. The encoding 
and decoding of these measurements are done at the 
transmitter and receiver side respectively. 

III. TRANSMITTER SECTION 
The transmitter section mainly involves domain 

transformation, JPEG encoding of the dense component and 
Arithmetic encoding of sparse measurements.  

A. Domain Transformation 
The image has to be converted into certain domain in 

which it could be represented sparsely, so as to take only few 
no of measurements. Sparseness is one of the reasons for the 
extensive use of popular transforms such as the discrete 
Fourier transform (DFT), the discrete wavelet transform 
(DWT) and the singular value decomposition (SVD). The 
aim of these transforms is to reveal certain structures of a 
signal and to represent these structures in a compact and 
sparse form. Sparse representations have therefore 
increasingly become recognized as providing extremely high 
performance for diverse applications such as: noise 
reduction, compression, feature extraction, pattern 

classification and blind source separation [15]. The fig. 1 
represents the various levels of wavelet transform. 

 
 

        
 
                 Figure 1. Levels of Wavelet transform 

The wavelet transform is a more efficient approach 
whose coefficients are exactly represented by finite precision 
numbers. In discrete cosine transform, only spatial 
correlation of the pixels inside the single 2-D block is 
considered and the correlation from the pixels of the 
neighboring blocks is neglected. Also, it is impossible to 
completely decorrelate the blocks at the boundaries using 
DCT. Undesirable blocking artifacts affect the reconstructed 
images or video frames (high compression ratios or very low 
bit rates). The wavelet transform overcome the above 
mentioned limitations of applying DCT on images and hence 
used in [1]. 

B. Transmitter block diagram 
After applying the 2D wavelet transform to the 

image, the resultant four bands LL, LH, HL and 
HH are to be encoded and transmitted. The 
transmitter block diagram of the proposed scheme 
is as shown in fig. 2. 

 
 

 
 
 
 
 
 
 
 

Figure 2. Transmitter block diagram    

C. Encoding of dense component 
The dense component of the input image, after 

transformation, is sampled by the normal linear sampling 
technique followed by quantization and the encoding 
scheme. 

In JPEG encoding, the dense component is transformed 
into discrete cosine domain followed by the scalar 
quantization to reduce the number of bits to represent them, 
at the expense of quality. The output of quantization is a set 
of integer numbers which have to be encoded bit-by-bit. The 
quantization table for JPEG encoding is fixed and the quality 

lalitha
Text Box
International Journal of P2P Network Trends and Technology (IJPTT)  - Volume 4 Issue 2 March to April 2014


lalitha
Text Box
24



     International Journal of P2P Network Trends and Technology (IJPTT) –  Volume 7  –  April  2014 

ISSN: 2249-2615                    http://www.ijpttjournal.org                               Page 3 
 

Image split 
into blocks 

Encoded 
JPEG image 

Decoded Image from 
reassembled blocks 

Encoded 
JPEG image 

matrix is formulated by manipulating the quantization table 
depending on the required quality of compression []. The 
JPEG is the lossy compression technique for images. The 
degree of compression can be adjusted, but with a tradeoff 
between storage size and quality. The JPEG encoding and 
decoding sections are as shown in the fig. 3.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. JPEG Encoding and Decoding 
 

D. Encoding of sparse components 
The sparse measurements taken by the technique of 

compressed sensing (ref. section 2) are to be encoded by 
arithmetic encoding. Arithmetic coding is a form of entropy 
coding used in lossless data compression. When a string is 
arithmetic encoded, frequently used characters will be stored 
with fewer bits and not-so-frequently occurring characters 
will be stored with more bits, resulting in fewer bits used in 
total. Arithmetic coding differs from other forms of entropy 
encoding such as Huffman coding in that rather than 
separating the input into component symbols and replacing 
each with a code, arithmetic coding encodes the entire 
message into a single number, usually a fraction n where 
(0.0 ≤ n < 1.0), called a Tag value. The encoder considers 
only three important values : the next symbol that needs to be 
encoded, the current interval (at the very start of the 
encoding process, the interval is set to [0,1), but that will 
change), the probabilities the model assigns to each of the 
various symbols that are possible at this stage. The encoder 
divides the current interval into sub-intervals, each 
representing a fraction of the current interval proportional to 
the probability of that symbol in the current context. 
Whichever interval corresponds to the actual symbol that is 
next to be encoded becomes the interval used in the next step. 

When all symbols have been encoded, the resulting 
interval unambiguously identifies the sequence of symbols 
that produced it. If the same final interval and model that is 
being used are available, the symbol sequence that must have 
entered the encoder to result in that final interval can be 
reconstructed. It is not necessary to transmit the final interval, 

however; it is only necessary to transmit one fraction that lies 
within that interval. In particular, it is only necessary to 
transmit enough digits of the fraction so that all fractions that 
begin with those digits fall into the final interval [12]. 
 

IV. RECEIVER SECTION 

The receiver section comprises of two main sections: 
Interpolation and Signal recovery. The dense component 
which is transmitted as it is, using JPEG encoding technique, 
will be given as the input to the interpolation process, the 
output of which is applied again with wavelet transform. The 
resultant sparse components along with the arithmetic 
decoded sparse measurements are given as inputs to the 
POCS recovery algorithm to obtain the estimated sparse 
components. These recovered sparse components along with 
the dense component are applied with inverse wavelet 
transform to get back the original image. The fig. 4 describes 
the receiver section in detail. 

   

 
 

 

 

 

 

Figure 4. Receiver section 

A. PAR model based Interpolation 
Interpolation is a method of constructing new data points 

within the range of a discrete set of known data points. There 
are many types of interpolation namely bilinear interpolation, 
bi-cubic interpolation etc. The interpolation technique is 
dealt in this paper, combines a soft-decision interpolation 
technique that estimates missing pixels in the enlarged image, 
in groups rather than one at a time [7]. The soft decision 
estimation technique learns and adapts to varying scene 
structures at the edges using a 2-D piecewise autoregressive 
model (PAR). The model parameters are estimated in a 
moving window in the input low-resolution image. The pixel 
structure dictated by the learnt model is enforced by the soft-
decision estimation process onto a block of pixels, including 
both observed and estimated. The result is equivalent to that 
of a high-order adaptive non separable 2-D interpolation 
filter. This new image interpolation approach preserves 
spatial coherence of interpolated images at the edges better 
than the existing methods, and produces best results so far 
over a wide range of scenes in terms of subjective visual 
quality [7].  

Although the input image could be decomposed into the 
dense and sparse components, one can still observe that there 
exists a strong visual correlation between them. Therefore, it 
is possible to use the dense component to predict the original 
image, as well as the sparse component. The recent 
development on adaptive interpolation provides an effective 
tool to solve this problem. The adaptive interpolation 
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describe the image as a 2D piecewise autoregressive (PAR) 
model, namely, 
                    





B ji,
n)(m,

ji,njm,inm,ji, vXαX          

        (4) 
where j)(i,  is the pixel to be interpolated,  

     ji,B is the window centered at pixel j)(i, ,  

      ji,v  is the random perturbation  independent of pixel 
and the image signal.   

It is observed that the image is piecewise stationary. In 
other words, although the PAR model parameters αm,n can 
vary significantly in different segments of a scene, they 
remain constant in a small local window. Let Ix be the image 
to be estimated by interpolating the decoded dense 
component Iy of the original image. Let xi ϵ Ix and yi ϵ Iy be 
the pixels of the estimated and the original image. The four 
connected neighbors of pixel location i in the original image 
are represented as xi-t and yi-t depending on whether they are 
in the original image or interpolated image with t values 
0,1,2,3. With the introduced notations and the PAR image 
model, the problem of interpolation is estimated as an 
optimization problem. 

  
 


 




Wi

3

0t

(8)
tit

(4)

titi
Wi

3

0t

(8)

tit
(4)

titixb,a,
}(({min xbyaxybxay    (5) 

To apply the PAR model in interpolating samples, the 
model parameters from an incomplete data set (half of the 
pixels are missing), has to be estimated. On one hand, the 
interpolation performance relies on a good model that fits the 
true data. On the other hand, the model parameters can be 
reliably estimated only if the missing pixels are known, 
thereby creating the dilemma. It can be overcome by treating 
model parameters a, b and the missing pixels both as 
variables in the proposed optimal estimation problem of (5). 
This allows estimating the model parameters and the missing 
pixels jointly under the constraint of the known quincunx 
image Iy. The optimization objective is to maintain a best 
statistical agreement between the estimated model and the 
interpolated pixels [7].  

The optimization problem of (5) is non-linear and non-
convex. Hence the problem is broken into three linear least-
square sub-problems which develop an efficient solution. 
Under the assumption of piecewise local stationarity, the two 
images Ix and Iy have the same second-order statistics. Thus 
the model parameters b= (b0, b1, b2, b3) can be estimated by 
linear least-square fitting of the known quincunx image Iy, 
independent of Ix. The first subproblem to be solved is as 
follows, 

  }{minargb
Wi

3

0t

(8)

titib

^

yby 
 


          (6) 

        }{minarga
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3
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titia

^

yby 
 


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where y ti

*


are the north, south, east and west neighbours of 

the pixel location i in Iy.  

                        
Figure 5. Sample relations in estimating model parameters 

By solving the two linear least-square problems of 
estimating b and a, it reduces (5.2) to a linear least-square 
estimation problem. 
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Rather than making one estimate at a time, the objective 
function (8) accounts for the mutual influences among 
estimates of neighbouring missing pixels. These estimates 
are jointly optimized in a local window W so that the PAR 
model fits all pixels in W, regardless from Ix or Iy, in least 
squares sense [9]. 

By applying the above explained interpolation techniques 
on the edge and other regions respectively, the interpolated 
image which is equal in size to that of the original image is 
obtained. The wavelet transform is applied to the interpolated 
image to obtain again the dense and the sparse components. 

B. Signal Recovery 
The recovery algorithm used in this scheme is Projection 

onto Convex Set, which is a convex optimization problem. If 
a finite signal NRf  has to be recovered from a set of K  
linear measurements which is the vastly underdetermined 
case K<<N, where there are many more unknowns than 
observations, the signal f cannot be completely recovered 
from the reduced measurements.     However, if  f is sparse, 
in the sense if it can be written as a superposition of a small 
number of vectors taken from a basis Ѱ, then the exact 
recovery is possible and the ’true’ signal f actually is the 
solution to a simple convex optimization problem. 

The prediction of sparse components from the 
interpolated image, helps in two aspects: first, it could be 
used as the initialization of the iteration. As known, 
initialization is important to an iterative algorithm and the 
initial value need to be in a certain space for final 
convergence at local optimal. Secondly, the prediction can be 
used as a reference which helps for converging more rapidly 
and accurately. Suppose that  f  is sparse which means only a 
few of its entries are non-zero; that is, we can write f as a 
superposition of M spikes [2]. 





Tτ

t τ)δ(tαf(t)                           (10) 

for some MTNT  ||},1,...1,0{ , where neither the 
locations nor the amplitudes of the spikes are not known. The 
central theorem states that for an overwhelming percentage 
of sets Ω with cardinality obeying the following condition,  

                   Nconst.MlogKΩ                 (11) 
f is the unique solution to the convex optimization problem. 

       
 t

l1Rg
g(t):gmin

N
 subject to ygFΩ               

(12) 
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that is, it is possible, with high probability, to recover  f  from 
the knowledge of its projection onto a randomly selected K-
dimensional subspace [2]. 

Suppose a Gaussian ensemble is generated by choosing 
each (M)k,n independently from zero mean, normal 
distribution with unit variance 

 N(0,1)~(M) nk,  k=0,1,…,K-1    n=0,1,….,N-1         (13) 
and it is used to measure a sparse signal  f, y=Mf. Again if 

NMconstK log. , then  f  is the unique solution to  

l1gmin   subject to  yg*M                        (14) 
When the K<<N measurement ensemble is constructed 

and used to measure  f, we are essentially choosing a K 
dimensional subspace uniformly at random from the set of all 
K dimensional subspaces, and then projecting  f onto it. The 
fact that f can be recovered means that although K can be 
much smaller than N, the projection retains enough critical 
information to specify f uniquely [2]. The Gaussian 
measurement ensemble easily allows to extend the results to 
signals that are sparse in any fixed orthonormal basis Ѱ. To 
recover the signal, the equation (13) is modified to search 
over coefficient sequences in the Ѱ domain. 

  l1αmin  subject to yMΨ                              (15) 
Because the subspace is chosen uniformly at random, it 

does not matter which set of axes the signal is aligned with. 
Mathematically speaking, if M has i.i.d. Gaussian entries and 
is orthonormal, then the distribution of the random matrix M 
is exactly the same as that of M; making measurements of  f 
using M and solving (14) will recover signals with M-sparse 
representations in the domain when the condition 

MlogN*ConstK   is satisfied [2]. This invariance property 
makes the Gaussian measurement ensemble especially 
attractive; we can recover sparse signals in any fixed basis 
from randomly sampled K measurement vectors with very 
high probability. To begin, suppose that the condition for 
exact reconstruction is satisfied; that is, the wavelet 
coefficients α are non-zero only on a small set T. Let 
M’=MѰ be the measurement matrix expressed in the wavelet 
domain. Since α is the unique solution to (14), 

The l1 ball       }||α||||β:||{βB l1l1       (16) 

and the hyperplane  y}β'M:{βH              (17) 
meet at exactly one point  }{HB             (18) 

There are two types of projections in this algorithm, the 
projection onto H and the projection onto ball B [2]. To find 
the closest vector ^

β in H, the following formula is used, 

  )β*φ(y*φββ
1 ˆˆ 


       (19) 

the sparse components which are obtained by applying 
wavelet transform β is projected onto the above mentioned 
hyperplane, which will result in an estimate ̂ . This estimate 
will be projected onto the ball. 

To project the vector ̂  onto l1 ball, a soft-thresholding 
operation is applied. 

    













)(.......)(ˆ
)(.................0ˆ
)(.......)(ˆ

tt

t

tt
       (20) 

 
To determine the threshold, 

   
 ˆˆ

11 ll


,                       (21) 

the coefficients are to be sorted out and a linear search has to 
be performed which will require O(N log N) operations [2].  

 
 
 
 
 
 

V. OBSERVATIONS 
  
TABLE I 
 

 
IMAGE 
NAME 

 
RMSE 

 
PSNR WITH  
ENCODING 

Coins 6.45 33.8574 
Cameraman 5.65 32.9193 

 
 
TABLE II 
 

 
Q tab 

 
CR 

 
    BPP 

 
PSNR 

10 21.93 0.3646 32.9236 
20 18.81 0.4250 32.9241 
40 15.58 0.5130 32.8833 
60 11.34 0.6810 32.9687 
80 10.54 0.7587 32.7670 
90 08.25 0.4692 32.8507 

 
 
CR – Compression Ratio 
BPP – Bits Per Pixel 
PSNR – Peak Signal to Noise Ratio 
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    Figure 6.a Dense Component ,        Figure 6.b Interpolated dense Component 

 
 
 
                                          

          

                           
 
   Figure 7.a Input image          Figure 7.b Recovered image 
         (Q tab = 10, CR = 21.93, bpp = 0.36)  
 
 

                           
 
 
   Figure 7.c Recovered image,        Figure 7.d Recovered image 
             (Q tab = 50, CR = 12.58, bpp = 0.64)                   (Q tab = 90, CR = 8.25, bpp = 0. 46)  
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VI. CONCLUSIONS 
Since the sampling process of a compressive sensing 

device is simple and collected measurements are already 
compressed, the devices built based on compressive sensing 
need less computational power and have cheaper embedded 
hardware. The reason is that signal information is evenly 
distributed amongst the measurements and if some 
measurements are dropped during communication, it is still 
possible to recover the signal using received measurements 
[5]. In this paper, a new image representation scheme for the 
wireless sensor networks is proposed. The work shows that 
the decomposition of the input data before CS measuring is 
important and especially useful for reducing the number of 
measurements and recovery iterations. First, the 
decomposition removes the unnecessary component, which 
is not suitable for CS recovery. Second, the prediction by 
interpolation of the dense component helps the recovery 
procedure of the sparse component. When the quality of 
JPEG compression of the dense component is varied, the 
compression ratio as well as bits per pixel values change and 
tabulated in Table 2. The future work will be in the reduction 
of complexity in the arithmetic encoding and decoding of 
sparse measurements.  
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