
International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 4 July to August 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 11

Cloud Computing: A Responsibility data

sharing in the cloud computing
K.Phanindhar

#1
, Ch.Suresh

*2
 Asst Professor

Abstract— Cloud computing provides highly efficient

services to be easily accessed or used over the Internet on as

needed basis. An important feature of the cloud services is

that users’ data are usually processed remotely in unknown

machines that users do not own or operate. This convenience

brought by this new emerging technology, users’ fears of

losing control of their own data (particularly, financial and

health data) can become a significant barrier to the wide

adoption of cloud services. To address this problem, in this

paper, we propose a novel highly decentralized information

accountability framework to keep track of the actual usage

of the users’ data in the cloud. In particular, we propose an

object centred approach that enables enclosing our logging

mechanism together with users’ data and policies. We

leverage the JAR programmable capabilities to both create a

dynamic and travelling object, and to ensure that any access

to users’ data will trigger authentication and automated

logging local to the JARs. To strengthen user’s control, we

also provide distributed auditing mechanisms. We provide

extensive experimental studies that demonstrate the

efficiency and effectiveness of the proposed approaches.

Keywords— Cloud computing, accountability, data sharing.

I. INTRODUCTION

Cloud computing presents a new way to supplement
the current consumption and delivery model for IT
services based on the Internet, by providing for
dynamically scalable and often virtualized resources
as a service over the Internet. Moreover, users may not
know the machines which actually process and host
their data. While enjoying the convenience brought by
this new technology, users also start worrying about
losing control of their own data. The data processed
on clouds are often outsourced, leading to a number of
issues related to accountability, including the handling
of personally identifiable information. Such fears are
becoming a significant barrier to the wide adoption of
cloud services.
To allay users’ concerns, it is essential to provide an

effective mechanism for users to monitor the usage of
their data in the cloud. For example, users need to be

able to ensure that their data are handled according to
the service-level agreements made at the time they

sign on for services in the cloud. Conventional access

control approaches developed for closed domains such
as databases and operating systems, or approaches

using a centralized server in distributed environments,

are not suitable, due to the following features
characterizing cloud environments. First, data

handling can be outsourced by the direct cloud service
provider (CSP) to other entities in the cloud and theses

entities can also delegate the tasks to others, and so

on. Second, entities are allowed to join and leave the

cloud in a flexible manner. As a result, data handling
in the cloud goes through a complex and dynamic

hierarchical service chain which does not exist in

conventional environments.

To overcome the above problems, we propose a

novel approach, namely Cloud Information

Accountability (CIA) framework, based on the notion

of information accountability [44]. Unlike privacy

protection technologies which are built on the hide-it-

or-lose-it perspective, information account-ability

focuses on keeping the data usage transparent and

trackable. Our proposed CIA framework provides end-

to-end accountability in a highly distributed fashion.

One of the main innovative features of the CIA

framework lies in its ability of maintaining lightweight

and powerful account-ability that combines aspects of

access control, usage control and authentication. By

means of the CIA, data owners can track not only

whether or not the service-level agreements are being

honoured, but also enforce access and usage control

rules as needed. Associated with the accountability

feature, we also develop two distinct modes for

auditing: push mode and pull mode. The push mode

refers to logs being periodically sent to the data owner

or stakeholder while the pull mode refers to an

alternative approach whereby the user (or another

authorized party) can retrieve the logs as needed.

The design of CIA frame work presents substantial

challenges, including uniquely identifying CSPs,

ensuring the reliability of the log, adapting to a highly

decentralized infrastructure, etc. Our basic approach

toward addressing these issues is to leverage and

extend the programmable capability of JAR (Java

ARchives) files to automatically log the usage of the

users’ data by any entity in the cloud. Users will send

their data along with any policies such as access

control policies and logging policies that they want to

enforce, enclosed in JAR files, to cloud service

providers. Any access to the data will trigger an

automated and authenticated logging mechanism local

to the JARs. We refer to this type of enforcement as

“strong binding” since the policies and the logging

mechanism travel with the data. This strong binding

exists even when copies of the JARs are created; thus,

the user will have control over his data at any location.

Such decentralized logging mechanism meets the

dynamic nature of the cloud but also imposes

challenges on ensuring the integrity of the logging. To

cope with this issue, we provide the JARs with a

central point of contact which forms a link between

them and the user. It records the error correction

information sent by the JARs, which allows it to

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 4 July to August 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 12

monitor the loss of any logs from any of the JARs.

Moreover, if a JAR is not able to contact its central

point, any access to its enclosed data will be denied.

Currently, we focus on image files since images

represent a very common content type for end users

and organizations (as is proven by the popularity of

Flickr) and are increasingly hosted in the cloud as part

of the storage services offered by the utility computing

paradigm featured by cloud computing. Further,

images often reveal social and personal habits of

users, or are used for archiving important files from

organizations. In addition, our approach can handle

personal identifiable information provided they are

stored as image files (they contain an image of any

textual content, for example, the SSN stored as a .jpg

file).

In summary, our main contributions are as follows:

. We propose a novel automatic and enforceable

logging mechanism in the cloud. To our

knowledge, this is the first time a systematic

approach to data accountability through the

novel usage of JAR files is proposed.

. Our proposed architecture is platform

independent and highly decentralized, in that it

does not require any dedicated authentication

or storage system in place.

. We go beyond traditional access control in that
we provide a certain degree of usage control

for the protected data after these are delivered

to the receiver.

II. PROBLEM STATEMENT

We begin this section by considering an illustrative

example which serves as the basis of our problem

statement and will be used throughout the paper to

demonstrate the main features of our system.

Example 1. Joy, a professional photographer, plans to

sell her photographs by using the MyWeb Cloud

Services. For her business in the cloud, she has the

following requirements:

Her photographs are downloaded only by users
who have paid for her services.

. Potential buyers are allowed to view her

pictures first before they make the payment to
obtain the download right.

. Due to the nature of some of her works, only
users from certain countries can view or

download some sets of photographs.
. For some of her works, users are allowed to

only view them for a limited time, so that the
users cannot reproduce her work easily.

. In case any dispute arises with a client, she
wants to have all the access information of that
client.

. She wants to ensure that the cloud service

providers of MyWeb do not share her data

with other service providers, so that the

accountability provided for individual users

can also be expected from the cloud service

providers.
With the above scenario in mind, we identify the
common requirements and develop several guidelines
to achieve data accountability in the cloud. A user,
who subscribed to a certain cloud service, usually
needs to send his/her data as well as associated access
control policies (if any) to the service provider. After
the data are received by the cloud service provider, the
service provider will have granted access rights, such
as read, write, and copy, on the data. Using
conventional access control mechanisms, once the
access rights are granted, the data will be fully
available at the service provider. In order to track the
actual usage of the data, we aim to develop novel
logging and auditing techniques which satisfy the
following requirements:

1. The logging should be decentralized in order to
adapt to the dynamic nature of the cloud. More
specifically, log files should be tightly
bounded with the corresponding data being
controlled, and require minimal infrastructural
support from any server.

2. Every access to the user’s data should be

correctly and automatically logged. This

requires integrated techniques to authenticate

the entity who accesses the data, verify, and

record the actual operations on the data as well

as the time that the data have been accessed.

3. Log files should be reliable and tamper proof

to avoid illegal insertion, deletion, and

modification by malicious parties. Recovery

mechanisms are also desirable to restore

damaged log files caused by technical

problems.

4. Log files should be sent back to their data

owners periodically to inform them of the

current usage of their data. More importantly,

log files should be retrievable anytime by their

data owners when needed regardless the

location where the files are stored.

5. The proposed technique should not intrusively

monitor data recipients’ systems, nor it should
introduce heavy communication and
computation overhead, which otherwise will
hinder its feasibility and adoption in practice.

III. CLOUD INFORMATION ACCOUNTABILITY

Here we present an overview of the Cloud Information

Accountability framework and discuss how the CIA

framework meets the design requirements discussed in

the previous section.
The Cloud Information Accountability framework

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 4 July to August 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 13

proposed in this work conducts automated logging and
distributed auditing of relevant access performed by
any entity, carried out at any point of time at any
cloud service provider. It has two major components:
logger and log harmonizer.

A. CIA Components

Two major components of the CIA are, the first being

the logger, and the second being the log harmonizer.

The logger is the component which is strongly

coupled with the user’s data, so that it is downloaded

when the data are accessed, and is copied whenever

the data are copied. It handles a particular instance or

copy of the user’s data and is responsible for logging

access to that instance or copy. The log harmonizer

forms the central component which allows the user

access to the log files.

The logger is strongly coupled with user’s data

(either single or multiple data items). Its main tasks

include automatically logging access to data items that

it contains, encrypting the log record using the public

key of the content owner, and periodically sending

them to the log harmonizer. It may also be configured

to ensure that access and usage control policies

associated with the data are honoured. For example, a

data owner can specify that user X is only allowed to

view but not to modify the data. The logger will

control the data access even after it is down-loaded by

user X.

The logger requires only minimal support from the

server (e.g., a valid Java virtual machine installed) in

order to be deployed. The tight coupling between data

and logger, results in a highly distributed logging

system, therefore meeting our first design

requirement. Furthermore, since the logger does not

need to be installed on any system or require any

special support from the server, it is not very intrusive

in its actions, thus satisfying our fifth requirement.

Finally, the logger is also responsible for generating

the error correction information for each log record

and sends the same to the log harmonizer. The error

correction information combined with the encryption

and authentication mechanism provides a robust and

reliable recovery mechanism, therefore meeting the

third requirement.

The log harmonizer is responsible for auditing.
Being the trusted component, the log harmonizer

generates the master key. It holds on to the decryption

key for the IBE key pair, as it is responsible for

decrypting the logs. Alternatively, the decryption can

be carried out on the client end if the path between the

log harmonizer and the client is not trusted. In this

case, the harmonizer sends the key to the client in a

secure key exchange.
It supports two auditing strategies: push and pull.

Under the push strategy, the log file is pushed back to

the data owner periodically in an automated fashion.

The pull mode is an on-demand approach, whereby

the log file is obtained by the data owner as often as

requested. These two modes allow us to satisfy the

aforementioned fourth design requirement. In case

there exists multiple loggers for the same set of data

items, the log harmonizer will merge log records from

them before sending back to the data owner. The log

harmonizer is also responsible for handling log file

corruption. In addition, the log harmonizer can itself

carry out logging in addition to auditing. Separating

the logging and auditing functions improves the

performance. The logger and the log harmonizer are

both implemented as lightweight and portable JAR

files. The JAR file implementation provides automatic

logging functions, which meets the second design

requirement.

B. Flow of Data
The overall CIA framework, combining data, users,

logger and harmonizer is sketched in Fig. 1. At the

beginning, each user creates a pair of public and

private keys based on Identity-Based Encryption [4]

(step 1 in Fig. 1). This IBE scheme is a Weil-pairing-

based IBE scheme, which protects us against one of

the most prevalent attacks to our architecture. Using

the generated key, the user will create a logger

component which is a JAR file, to store its data items.

 The JAR file includes a set of simple access control

rules specifying whether and how the cloud servers,

and possibly other data stakeholders (users,

companies) are authorized to access the content itself.

Then, he sends the JAR file to the cloud service

provider that he subscribes to. To authenticate the CSP

to the JAR (steps 3-5 in Fig. 1), we use Open SSL-

based certificates, wherein a trusted certificate

authority certifies the CSP. In the event that the access

is requested by a user, we employ SAML-based

authentication [8], wherein a trusted identity provider

issues certificates verifying the user’s identity based

on his username.

Once the authentication succeeds, the service

provider (or the user) will be allowed to access the

data enclosed in the JAR. Depending on the

configuration settings defined at the time of creation,

the JAR will provide usage control associated with

logging, or will provide only logging functionality. As

for the logging, each time there is an access to the

data; the JAR will automatically generate a log record,

encrypt it using the public key distributed by the data

owner, and store it along with the data (step 6 in Fig.

1). The encryption of the log file prevents

unauthorized changes to the file by attackers. The data

owner could opt to reuse the same key pair for all

JARs or create different key pairs for separate JARs.

Using separate keys can enhance the security (detailed

discussion is in Section 7) without introducing any

overhead except in the initialization phase. In addition,

some error correction information will be sent to the

log harmonizer to handle possible log file corruption

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 4 July to August 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 14

(step 7 in Fig. 1). To ensure trustworthiness of the

logs, each record is signed by the entity accessing the

content. Further, individual records are hashed

together to create a chain structure, able to quickly

detect possible errors or missing records. The

encrypted log files can later be decrypted and their

integrity verified. They can be accessed by the data

owner or other authorized stakeholders at any time for

auditing purposes with the aid of the log harmonizer

(step 8 in Fig. 1).

Our proposed framework prevents various attacks

such as detecting illegal copies of users’ data. Note

that our work is different from traditional logging

methods which use encryption to protect log files.

With only encryption, their logging mechanisms are

neither automatic nor distributed. They require the

data to stay within the boundaries of the centralized

system for the logging to be possible, which is

however not suitable in the cloud.

Example 2. Considering Example 1, Joy can enclose

her photographs and access control policies in a

JAR file and send the JAR file to the cloud service

provider. With the aid of control associated logging

(called AccessLog in Section 5.2), Joy will be able

to enforce the first four requirements and record the

actual data access. On a regular basis, the push-

mode auditing mechanism will inform Alice about

the activity on each of her photo-graphs as this

allows her to keep track of her clients’

demographics and the usage of her data by the

cloud service provider. In the event of some dispute

with her clients, Alice can rely on the pull-mode

auditing mechanism to obtain log records.

IV. LOGGING MECHANISM

A. Logger Structure
 We leverage the programmable capability of JARs to

conduct automated logging. A logger component is a

nested Java JAR file which stores a user’s data items

and corresponding log files. Our proposed JAR file

consists of one outer JAR enclosing one or more inner

JARs.

The main responsibility of the outer JAR is to

handle authentication of entities which want to access

the data stored in the JAR file. In our context, the data

owners may not know the exact CSPs that are going to

handle the data. Hence, authentication is specified

according to the servers’ functionality (which we

assume to be known through a lookup service), rather

than server’s URL or identity.

 mple 3. Consider Example 1. Suppose that Joy’s

photographs are classified into three categories

according to the locations where the photos were

taken. The three groups of photos are stored in three

inner JAR J1, J2, and J3, respectively, associated with

different access control policies. If some entities are

allowed to access only one group of the photos, say

J1 , the outer JAR will just render the corresponding

inner JAR to the entity based on the policy evaluation

result.

Each inner JAR contains the encrypted data, class

files to facilitate retrieval of log files and display

enclosed data in a suitable format, and a log file for

each encrypted item. We support two options:

. PureLog. Its main task is to record every

access to the data. The log files are used for

pure auditing purpose.

. AccessLog. It has two functions: logging

actions and enforcing access control. In case

an access request is denied, the JAR will

record the time when the request is made. If

the access request is granted, the JAR will

additionally record the access information

along with the duration for which the access is

allowed.

The two kinds of logging modules allow the data

owner to enforce certain access conditions either

proactively (in case of AccessLogs) or reactively (in

case of PureLogs). For example, services like billing

may just need to use PureLogs. AccessLogs will be

necessary for services which need to enforce service-

level agreements such as limiting the visibility to

some sensitive content at a given location.
 To carry out these functions, the inner JAR contains

a class file for writing the log records, another class

file which corresponds with the log harmonizer, the

encrypted data, a third class file for displaying or

downloading the data (based on whether we have a

PureLog, or an AccessLog), and the public key of the

IBE key pair that is necessary for encrypting the log

records. No secret keys are ever stored in the system.

The outer JAR may contain one or more inner JARs,

in addition to a class file for authenticating the servers

or the users, another class file finding the correct inner

JAR, a third class file which checks the JVM’s

validity using oblivious hashing. Further, a class file is

used for managing the GUI for user authentication and

the Java Policy.

B. Generation of Log Record

Log records are generated by the logger component.

Logging occurs at any access to the data in the JAR,

and new log entries are appended sequentially, in

order of creation. Each record ri is encrypted

individually and appended to the log file. In particular,

a log record takes the following form:

C. Log Dependability

1. Availability of JARs:

To protect against attacks perpetrated on offline JARs,

the CIA includes a log harmonizer which has two

main responsibilities: to deal with copies of JARs and

to recover corrupted logs.

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 4 July to August 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 15

Each log harmonizer is in charge of copies of

logger components containing the same set of data

items. The harmonizer is implemented as a JAR file. It

does not contain the user’s data items being audited,

but consists of class files for both a server and a client

processes to allow it to communicate with its logger

components. The harmonizer stores error correction

information sent from its logger components, as well

as the user’s IBE decryption key, to decrypt the log

records and handle any duplicate records. Duplicate

records result from copies of the user’s data JARs.

Since user’s data are strongly coupled with the logger

component in a data JAR file, the logger will be

copied together with the user’s data. Consequently, the

new copy of the logger contains the old log records

with respect to the usage of data in the original data

JAR file. Such old log records are redundant and

irrelevant to the new copy of the data. To present the

data owner an integrated view, the harmonizer will

merge log records from all copies of the data JARs by

eliminating redundancy.

2. Correctness of Log:

For the logs to be correctly recorded, it is essential that

the JRE of the system on which the logger

components are running remain unmodified. To verify

the integrity of the logger component, we rely on a

two-step process: 1) we repair the JRE before the

logger is launched and any kind of access is given, so

as to provide guarantees of integrity of the JRE. 2) We

insert hash codes, which calculate the hash values of

the program traces of the modules being executed by

the logger component. This helps us detect

modifications of the JRE once the logger component

has been launched, and are useful to verify if the

original code flow of execution is altered.

V. END TO END AUDITING

To allow users to be timely and accurately informed

about their data usage, our distributed logging

mechanism is complemented by an innovative

auditing mechanism. We support two complementary

auditing modes: 1) push mode; 2) pull mode.

Push mode: In this mode, the logs are periodically

pushed to the data owner (or auditor) by the

harmonizer. The push action will be triggered by

either type of the following two events: one is that the

time elapses for a certain period according to the

temporal timer inserted as part of the JAR file; the

other is that the JAR file exceeds the size stipulated by

the content owner at the time of creation. After the

logs are sent to the data owner, the log files will be

dumped, so as to free the space for future access logs.

Along with the log files, the error correcting

information for those logs is also dumped.

Pull mode: This mode allows auditors to retrieve

the logs anytime when they want to check the recent

access to their own data. The pull message consists

simply of an FTP pull command, which can be issues

from the command line. For naive users, a wizard

comprising a batch file can be easily built. The request

will be sent to the harmonizer, and the user will be

informed of the data’s locations and obtain an

integrated copy of the authentic and sealed log file.

VI. CONCLUSION

We proposed innovative approaches for automatically

logging any access to the data in the cloud together

with an auditing mechanism. Our approach allows the

data owner to not only audit his content but also

enforce strong back-end protection if needed.

Moreover, one of the main features of our work is that

it enables the data owner to audit even those copies of

its data that were made without his knowledge.

VII. REFERENCES

[1] P. Ammann and S. Jajodia, “Distributed Timestamp
Generation in Planar Lattice Networks,” ACM Trans.
Computer Systems, vol. 11, pp.205-225, Aug 1993.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable Data Possession at
Untrusted Stores,” Proc. ACM Conf. Computer and Comm.
Security, pp. 598-609, 2007.

[3] E. Barka and A. Lakas, “Integrating Usage Control with SIP-
Based Communications,” J. Computer Systems, Networks,
and Comm., vol. 2008, pp. 1-8, 2008.

[4] D. Boneh and M.K. Franklin, “Identity-Based Encryption
from the Weil Pairing,” Proc. Int’l Cryptology Conf.
Advances in Cryptology,
pp. 213-229, 2001.

[5] R. Bose and J. Frew, “Lineage Retrieval for Scientific Data
Processing: A Survey,” ACM Computing Surveys, vol. 37, pp.

1-28, Mar. 2005.

[6] P. Buneman, A. Chapman, and J. Cheney, “Provenance
Manage-ment in Curated Databases,” Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’06), pp. 539-550,
2006.

[7] B. Chun and A.C. Bavier, “Decentralized Trust Management
and Accountability in Federated Systems,” Proc. Ann. Hawaii
Int’l Conf. System Sciences (HICSS), 2004.

[8] OASIS Security Services Technical Committee, “Security
Assertion Markup Language (saml) 2.0,” http://www.oasis-
open.org/ committees/tc home.php?wg abbrev=security, 2012.

[9] R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and I. Staicu,
“A Logic for Auditing Accountability in Decentralized
Systems,”
Proc. IFIP TC1 WG1.7 Workshop Formal Aspects in Security
and Trust, pp. 187-201, 2005.

[10] B. Crispo and G. Ruffo, “Reasoning about Accountability

within Delegation,” Proc. Third Int’l Conf. Information and
Comm. Security (ICICS), pp. 251-260, 2001.

[11] Y. Chen et al., “Oblivious Hashing: A Stealthy Software
Integrity Verification Primitive,” Proc. Int’l Workshop
Information Hiding, F. Petitcolas, ed., pp. 400-414, 2003.

[12] S. Etalle and W.H. Winsborough, “A Posteriori Compliance
Control,” SACMAT ’07: Proc. 12th ACM Symp. Access
Control Models and Technologies, pp. 11-20, 2007.

[13] X. Feng, Z. Ni, Z. Shao, and Y. Guo, “An Open Framework
for Foundational Proof-Carrying Code,” Proc. ACM
SIGPLAN Int’l Workshop Types in Languages Design and
Implementation, pp. 67-78, 2007.

[14] Flickr, http://www.flickr.com/, 2012.
[15] R. Hasan, R. Sion, and M. Winslett, “The Case of the Fake

Picasso: Preventing History Forgery with Secure Provenance,”

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 4 July to August 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 16

Proc. Seventh Conf. File and Storage Technologies, pp. 1-14,
2009.

[16] J. Hightower and G. Borriello, “Location Systems for
Ubiquitous Computing,” Computer, vol. 34, no. 8, pp. 57-66,
Aug. 2001.

[17] J.W. Holford, W.J. Caelli, and A.W. Rhodes, “Using Self-
Defending Objects to Develop Security Aware Applications in
Java,” Proc. 27th Australasian Conf. Computer Science, vol.
26, pp.341-349, 2004.

[18] Trusted Java Virtual Machine IBM, http://www.almaden.ibm.
com/cs/projects/jvm/, 2012.

[19] P.T. Jaeger, J. Lin, and J.M. Grimes, “Cloud Computing and
Information Policy: Computing in a Policy Cloud?,” J.
Information Technology and Politics, vol. 5, no. 3, pp. 269-
283, 2009.

[20] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely, “Towards a
Theory of Accountability and Audit,” Proc. 14th European
Conf. Research in Computer Security (ESORICS), pp. 152-
167, 2009.

[21] R. Kailar, “Accountability in Electronic Commerce
Protocols,” IEEE Trans. Software Eng., vol. 22, no. 5, pp.
313-328, May 1996.

[22] W. Lee, A. Cinzia Squicciarini, and E. Bertino, “The Design
and Evaluation of Accountable Grid Computing System,”
Proc. 29th IEEE Int’l Conf. Distributed Computing Systems
(ICDCS ’09), pp. 145-154, 2009.

[23] J.H. Lin, R.L. Geiger, R.R. Smith, A.W. Chan, and S.

Wanchoo, Method for Authenticating a Java Archive (jar) for

Portable Devices, US Patent 6,766,353, July 2004.
[24] F. Martinelli and P. Mori, “On Usage Control for Grid

Systems,” Future Generation Computer Systems Vol. 26, no.
7. Pp. 1032-1042, 2010.

[25] T. Mather, S. Kumaraswamy, and S. Latif, Cloud Security and
Privacy: An Enterprise Perspective on Risks and Compliance
(Theory in Practice), first ed. O’ Reilly, 2009.

[26] M.C. Mont, S. Pearson, and P. Bramhall, “Towards
Accountable Management of Identity and Privacy: Sticky
Policies and Enforce-able Tracing Services,” Proc. Int’l
Workshop Database and Expert Systems Applications
(DEXA), pp. 377-382, 2003.

[27] S. Oaks, Java Security. O’Really, 2001.

