
International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 1

Generating Test cases through Markov Models

for undertaking Comprehensive Testing of

Embedded Systems
D. Bala Krishna Kamesh

#1
, Dr. A. K. Vasishtha

#2
, Dr. JKR Sastry

#3
 and Dr. V Chandra Prakash

#4

1
Scholar, ShriVenkateshwara University, Gajraula,

2
Professor, ShriVenkateshwara University, Gajraula,

3,4
KL University, Vaddeswaram, Guntur district,

Abstract- Cleanroom Software Engineering (CRSE)

methodology has incorporated in it, the Markov models

based on which the number of test cases that should be

used for testing can be determined. Model based statistics

are developed based on Markov model and the same are

used for determining the number of test cases that should

be used for testing each path contained in a Usage model.A

very few methods have been presented in literature which

define the actual process to be used for generating the test

cases especially considering the testing of embedded

systems. Every embedded system should be tested

comprehensively and testingmust include both hardware

and software states that exist in every path of the Markov

model. Testing embedded systems comprehensively

requiresusage of many methods which includeScaffolding,

Logical analysis, etc. and undertaking testing at different

locations. In this paper, a formal method has been

presented which generates test cases using Markov model

for achieving comprehensivetesting of an embedded

system.

Keywords- Markov model, usage model, Comprehensive

Testing, Embedded Systems, Clean Room Software

Engineering

I. Introduction

Development and testing of embedded software is

difficult as the software consists of a large number of

concurrently executing and interacting tasks. Each

task in embedded software is executed at different

timeintervals under different conditions and with

different timing requirements. Furthermore,the time

available to develop and test an embedded system is

usually quite limited due to the relatively short

lifetime of the products.

Cost-effective testing of embedded software is of

critical concern in maintaining competitive edge.

Testing an embedded system manually is quite time

consuming and a costly proposition. Tool based

testing of an embedded system is to be considered

and put into use to reduce the cost of testing and also

complete the testing of the system rather earlier.

Testing and debugging an embedded system is

difficult and time consuming for simple reason that

the embedded system has neither storage device nor

adequate user interface. The users are extremely

intolerable of buggy embedded systems. Embedded

systems deal with external environment by way of

sensing the physical parameters and also must

provideoutputs that control the external environment.

In embedded systems, the issue of testing must

consider both hardware and software. The mal-

functioning of hardware can be detected through

software failures. The TARGETembedded system

does not support hardware and software platforms

needed for testing the software, hardware and both.

The testing of an embedded system cannot be done

just using the TARGET due lack of resources such as

user interface, storage etc. which are required for

undertaking actual testing. The software is developed

on HOSTmachine and the major portion of testing is

carried on the HOST before the software is moved to

the TARGET machinefor continuing further testing.

Comprehensive testing of an embedded system

requires pre-identification of various test methods,

the location of carrying testing and the kind of testing

that can be conducted using specific method.

Comprehensive testing includes testing Hardware,

The entire embedded system application code can be

divided primarily into components namely Hardware

independent code and Hardware dependent code.

Hardware independent code is a set of tasks that

perform mundane housekeeping and data processing,

whereas the hardware dependent code is either

interrupt service routines or the drivers that control

the operations of the device. It is necessary to

identify different types of test cases that test both

Hardware independent code and Hardware dependent

code. The testing techniques and the testing locations

where testing must be carried should address the

requirements of testing both the hardware

independent and hardware dependent code.

ES software development process is undertaken on a

HOSTcomputer, since the TARGET machine will not

have sufficient resources to undertake the software

development and testing. On completing the

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 2

development and undertaking the testing to certain

extent, the code is then copied on to the ROM,

EPROM or Flash memory of the TARGET and then

the hardware is again tested along with the HOST.

The Embedded system is connected to the production

system and the testing is carried again. Testing the

embedded system after connecting it to the

production system is absolutely necessary as any

amount of testing carried by simulating the events

initiated by the production system will not clearly

depict the working of the production system. The real

production system may initiate many unforeseen and

uncommon events which may not have been

considered at the time of developing the system.

If an analysis is carried on the entire code of an ES

application, it will be revealed that 80% of code is

hardware independent code and the rest is hardware

dependent code. It is easy, faster, and cost effective

to complete testing of the hardware independent code

on the HOST machine itself.

The testing of the hardware independent code can be

carried at the HOSTby using any of the techniques

that include Scaffolding, Assert Macros and

Instruction set simulators.A section of the code is

completely dependent on hardware and cannot be

tested without the TARGETmachine. Again

hardware dependent code cannot be tested by way of

only using the TARGET due to lack of resources

required to carry out testing. Therefore,testing of

hardware dependent code is to be carried along with

the HOSTmachine.

Testing the hardware requires integration of hardware

testing gadgets with the TARGETmachine &HOST.

The gadgets must be fed with inputs from the

HOSTfor undertaking particular type of Hardware

testing. The Hardware testing gadgetsare connected

to the TARGET through probes and the TARGET is

connected to the HOST using RS232C or RJ45

physical interface. Test cases are fed to a Logic

Analyzer through HOST and the Logic analyzer after

conducting the test shall make available the Test

results to the HOST.

Some of the testing required by an embedded system

cannot be conducted by using software alone.

Hardware equipment like Logic Analyzers is required

to carry testing of complex mechanisms that need

specific timing of the signals. The timing of various

signals must be measured and presented in a

graphical form. Sometimes, the time duration during

which the signals are valid must also be measured.

For proper processing, the timing of the signals and

the sequence in which signals are processed must be

tested. The triggering of the signals whether edge

triggered or level triggered and the voltage levels of

the signals must be measured and stored in order to

prepare and display timing of the signals. The

occurrence of the events can be tested by way of

sensing the change in the level or edge of a signal.

A microcontroller which is a part of an embedded

system at times is replaced by an In-Circuit Emulator

in the TARGETmachine. The Emulation Software is

stored in a separate memory different from

application memory and it maintains the execution

status of the application in its memory. The execution

of the application is controlled by the emulation

software. The emulation software also will have a

communication software component to communicate

with the HOST. HOST can feeda series of test cases

to In-Circuit Emulator and the test execution results

are sent back to the HOST.

Various types of testing are to be conducted to ensure

that anembedded system is built properly. The testing

types include unit testing, Environment testing,

Integration testing, END-TO-END testing,

Regression testing, etc.

Testing requirements can be projected right in the

beginning of the development of the system. The

testing scenarios can be projected from the end user’s

point of view. Test scenarios involve conducting any

testing type.

An Embedded system will undergo changes either

due to change in hardware, software or both. When

changes are made, the same are to be tested quite

rapidly. The change made at one location may affect

some other locations of hardware, or software or

both. The changes must be traced to Hardware or

Software or both and all affected components are to

be tested thoroughly. It is necessary to select all the

test cases that are related to changes made to the

affected components.

The type of testing to be done requires a decision on

the location at which the testing is to be carried and

also the kind of test method that should be used for

undertaking testing. The test cases are generated to

carry testing at a location using a test method

conforming to the type of testing required.

To carry testing of an embedded system

comprehensively, test cases are to be generated that

cater for testing hardware and software that are

associated with every path of the usage model. In

literature, very few methods have been proposed[7],

[9] which help generating the test cases. The methods

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 3

do not address the issue of testing both the hardware

and the software of the embedded systems

comprehensively. This paper presents a method that

helps testing the embedded system comprehensively.

The method is developed considering that it fits into

CRSE methodology and the method uses Markov

model effectively for the generation of test cases.

II. RELATED WORK

Testing modules of embedded systems can be carried

by isolating the modules at run time and carry the

testing[4]. This method has, however, failed to test

the occurrence of events in a particular sequence.

Testing of embedded software is limited by the

design of the hardware.When the hardware evolves,

agile methods work well provided multiple test

strategies are used [6]. This has powerful

implications for improving the quality of high

reliability systems, which commonly have embedded

software at their heart.

END-TO-END Integration testing [10] of an

embedded system requires specifying test scenarios

as thin threads; each thread representing a single

function. Interaction scenarios can be considered [5]

for conducting integration testing since the

integration testing must consider sequence of external

input events and internal interactions.

Regression testing [10] has been a popular quality

testing technique. Itis based on either code or

software design. Functional regression testing can be

carried based on test scenarios. A Web based tool has

also been developed to undertake regression testing.

Testing of embedded system can be undertaken by

simulating the hardware on the HOST and integrating

the ES software with the simulators[4]. This

approach, however, will not be able to deal with all

kinds of test scenarios related to hardware. The

complete behavior of hardware, specially unforeseen

behavior, cannot be simulated on a HOST machine.

Verification patterns[11] can be used for undertaking

the testing of the embedded systems, the key concept

of this being recognizing the scenarios into patterns

and applying the testing approach whenever similar

patterns are recognized in any embedded application.

But, the key to this approach is the ability to identify

all test scenarios that occur across all types of

embedded applications.

Even though several authors have suggested several

approaches to conducting several types of testing, no

attempt has been made so far to identify all possible

test scenarios considering both hardware and

software. Many tools are also available in the market

for testing embedded applications to carry fragments

of testing and even the fragments of the testing are

not done in a unified manner. The tools failed to

address the comprehensive testing requirements

considering both hardware and Software.

III. TEST CASE GENERATION FRAMEWORK

The generation of test cases for testing the embedded

systems comprehensively requires construction of a

usage model based on stimulus-response sequences

[2] and development of a Markov model by way of

assigning probability of occurrence of arcs emanating

from each node of the usage model[3].

Test cases are to be generated for each of the paths

contained in the usage model considering both

hardware and software states that exist on the path.

The paths which are generated considering the

Markov model that has been built for TMCNRS

(Monitoring and controlling the temperatures within

the Nuclear Reactor Systems)are shown in the Table

I.

Different types of test methods and the locations

where testing is to be carried are shown in the Table

II. For comprehensive testing of embedded systems,

all the test case types that are required to be tested

must be recognized quite ahead and a repository of

the same must be maintained [8]. The repository can

be updated from time to time. The test case types that

must be used are shown in the Table III.

Some test gadgets such as logic analyzer have to be

used for undertaking the testing of the hardware and

the embedded software. The gadgets are to be fed

with a command and command line arguments that

represent a test case. Testing the functioning of the

hardware is normally undertaken by using a

command language and defining the command line

arguments. The test gadgets provide the output when

the command and the command line arguments are

fed. Logic Analyzer (CDLOGIC) and a simulator

(SIMCS51) have been used for testing the hardware

and software related to TMCNRS.

The command language to be used for testing the

hardware considering CDLOGIC and SIMSC51 is

shown in the Table IV.

Both HW states and SW states exist in each and

every path of the usage model. The SW states are

program slices that operate on a single data and many

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 4

control dependencies[1]. Hardware states encapsulate

internal processing. All the states, both hardware and

software that exist on the paths of the Markov model

can be identified by using Table I.

Tracing the source code is carried to identify the

input variables and output variables that are

associated with SW states (Program slices). Table V

shows the program slices and their related

Input/output variables.

The type of testing that should be conducted

considering hardware or a software state can be

determined by mapping the test case types to the

respective states. Table VI shows the test types to be

used for conducting testing in relation to hardware

devices and program slices that are contained in

different paths of the Markov model.

Test cases can be generated using the following

algorithm.

1. Read all the paths in the usage model into

anarray

2. For each of the paths in the usage model

2.1 Estimatethe number of test cases that should

be generated for each of the paths contained

in the Markov Model

2.2 Count the number of hardware devices and

software slices that are contained in each of

the paths form Table I

2.3 List the Hardware states and software slices

that are included in each of the paths from

the repository as shown Table I

2.4 Apportion total test cases for each of the

paths evenly among the HW and Software

states

2.5 For each of the hardware devicesthat exist in

a path, select related test case types from

Table II and generate as many test cases

required as estimated for each of the paths.

2.6 For each of the program slices, trace the

associated input variables and expected

output variables as shown in the Table V

2.7 For each of the software slicesthat existin a

path, select related test case types from

Table VI and generate as many test cases

required by selecting proper tests values in

respect of the input variables that are

associated with the program slices as shown

in the Table V.

The test cases generated for testing some of the paths

contained in the usage model have been shown in the

Table VI In all,653 Test cases have been generated

and only a few of the test cases generated have been

shown in the Table VI.

IV. CONCLUSIONS

Comprehensive testing of the embedded systems

requires testing of HW, SW and both. Test case types

that should be used for undertaking the

comprehensive testing can be pre-identified and

mapped to the HW devices and SW slices that act as

states in the usage model. The actual test cases can be

generated based on the total number of test cases that

must be generated for each of the paths in the usage

model. The test cases can be sequenced as per the

sequence of occurrence of HW and SW states in each

of the paths.

REFERENCES

[1] D.Bala Krishna Kamesh, Prof. A.K. Vasishtha, Dr. JKR.

Sastry and Dr. V. Chandra Prakash,“Estimating the Failure

rates of Embedded Software through Program Slices”,

International Journal of Systems and Technology, Vol. 6,
Issue 1,pp.49-58,2013.

[2] D. Bala Krishna Kamesh, Dr. A. K. Vasishtha, Dr. JKR

Sastry and Dr. V. Chandra Prakash, “Developing Usage

Models through Stimulus Response Sequences”,
International Journal of Advances in Science and

Technology, Vol. 7, No. 4, 2013.
[3] D. Bala Krishna Kamesh, Dr. A. K. Vasishtha, Dr. JKR

Sastry and Dr. V. Chandra Prakash, “Assessing the

Probability of Failure and Distribution of Test Cases among

Paths in the Usage Model”, (Communicated) 2013.
[4] Jacobson, Booch G and Rumbaugh J, “The Unified Software

Development Process”, Addison Wesley, Reading, MA,

1999.

[5] Lee N.H and Cha S.D, “Generating Test Sequences from a

set of MSCs”, Computer Networks, 2003.
[6] Nancy Van Schooenderwoert, “Taming the embedded Tiger-

Agile Test Technique for embedded Software”, IEEE
Proceedings of the Agile Development Conference ADC,

2004.
[7] Prowell S.J.,“JUMBL: A tool for Model Based Statistical

Testing“, proceedings of the 36th Hawaii International
Conference on System Science, 2002.

[8] Sastry J.K.R, Rajasekhara Rao K, and SasiBhanu

J,“Comprehensive requirements specification of a Cost
effective testing Tool”, Proceedings of CSI National

Conference on Software Engineering, NCSOFT-2007,pp.73-

85, 2007.

[9] Sergiy A. Vilkomir, Thomas Swain and Jesse H. Poore,

“Combinatorial test case selection with Markovian usage

models”, Fifth International Conference on Information

Technology: New Generations,2008.
[10] Tsai W.T, Bai X, Paul R and Yu L, “ Scenario-Based

Function Regression Testing”, Proc. of IEEE
COMPSAC,pp.496-501,2001.

[11] Tsai W.T, Yu L, Paul R and Saim A, “Scenario-Based

Object-Oriented Test Frameworks for Testing Distributed

Systems”,IEICE Transactions,2003.

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 5

TABLE I

TEST PATHS DERIVED FROM THE MARKOV MODEL RELATED TO TMCNRS
Test Path

Number
Test Path Description State on the path

State serial

Number
HW / SW State

Path-1 Write Initial message to LCD Reset 1 HW

Microprocessor 13 HW

Display Initial Message 14 SW

LCD 50 HW

Path-2 Write enter password message on

LCD

Reset 1 HW

Microprocessor 13 HW

Display password enter message 15 SW

LCD 51 HW

Path-3 Read Key1 and write to LCD Reset 1 HW

Key1 2 HW

Keyboard 7 HW

A/D Converter 12 HW

Microprocessor 13 HW

Read key 16 SW

Write key 17 SW

LCD 51 HW

Path-4 Read Key2 and write to LCD Reset 1 HW

Key1 2 HW

Key2 3 HW

Keyboard 7 HW

A/D Converter 12 HW

Microprocessor 13 HW

Read key 16 SW

Write key 17 SW

LCD 51 HW

Path-5 Read Key3 and write to LCD Reset 1 HW

Key1 2 HW

Key2 3 HW

Key3 4 HW

Keyboard 7 HW

A/D Converter 12 HW

Microprocessor 13 HW

Read key 16 SW

Write key 17 SW

LCD 51 HW

Path-6 Read Key4 and write to LCD Reset 1 HW

Key1 2 HW

Key2 3 HW

Key3 4 HW

Key4 5 HW

Keyboard 7 HW

A/D Converter 12 HW

Microprocessor 13 HW

Read key 16 SW

Write key 17 SW

LCD 51 HW

Path-7 Read Key5 and write to LCD Reset 1 HW

Key1 2 HW

Key2 3 HW

Key3 4 HW

Key4 5 HW

Key5 6 HW

Keyboard 7 HW

A/D Converter 12 HW

Microprocessor 13 SW

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 6

Test Path

Number
Test Path Description State on the path

State serial

Number
HW / SW State

Path-7 Read Key5 and write to LCD Read key 16 SW

Write key 17 SW

LCD 51 HW

Path-8 Compare password and write

password mismatch on to LCD

Reset 1 HW

Key1 2 HW

Key2 3 HW

Key3 4 HW

Key4 5 HW

Key5 6 HW

Keyboard 7 HW

A/D Converter 12 HW

Microprocessor 13 HW

Compare Password 18 SW

Write Password mismatch 19 SW

LCD 51 HW

Path-9 Read Ref1 Temperature and

write to LCD

Reset 1 HW

Key1 2 HW

Key2 3 HW

Key3 4 HW

Key4 5 HW

Key5 6 HW

Keyboard 7 HW

A/D Converter 12 HW

Microprocessor 13 HW

Compare Password 18 SW

Request HOST for Ref1 20 SW

RS232C 21 HW

HOST 22 HW

Read HOST for Ref1 23 SW

WriteRef1 to LCD 24 SW

LCD 51 HW

Path-10 Read Ref2 Temperature and

write to LCD

Reset 1 HW

Key1 2 HW

Key2 3 HW

Key3 4 HW

Key4 5 HW

Key5 6 HW

Keyboard 7 HW

A/D Converter 12 HW

Microprocessor 13 HW

Compare Password 18 SW

Request HOST for Ref1 20 SW

RS232C 21 HW

HOST 22 HW

Read HOST for Resf1 23 SW

WriteRef1 to LCD 24 SW

Request HOST for Ref2 25 SW

RS232C 26 HW

HOST 27 HW

Read Ref2 from HOST 28 SW

WriteRef2 to LCD 29 HW

LCD 51 HW

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 7

Test Path

Number
Test Path Description State on the path

State Serial

Number
HW / SW State

Path-18 Compare Temp2 with Ref2 Sen2 9 HW

Test Path

Number
Test Path Description State on the path

State Serial

Number
HW / SW State

Path-11 Read Temp1 and write to LCD Sen1 8 HW

OP1 10 HW

A/D Converter 12 HW

Microprocessor 13 HW

Temp1Read 30 SW

WriteTemp1toLCD 31 SW

LCD 51 HW

Path-12 Read Temp1 and send to HOST Sen1 8 HW

OP1 10 HW

A/D Converter 12 HW

Microprocessor 13 HW

Read Temp1 30
32

52

53

SW

Send Temp1 to HOST SW

RS232C HW

HOST HW

Path -13 Compare Temp1 with Ref1

Temperature and set Pump1 ON

Sen1 8 HW

OP1 10 HW

A/D Converter 12 HW

Microprocessor 13 HW

Read Temp1 30 SW

Compare Temp1 with Ref1 33 SW

Pump1ON 38 SW

Relay1 40 HW

Pump1 41 HW

Path-14 Compare Temp1 with Ref1

Temperature and set Pump1OFF

Sen1 8 HW

OP1 10 HW

A/D Converter 12 HW

Microprocessor 13 HW

Path-14 Compare Temp1 with Ref1
Temperature and set Pump1 ON

Read Temp1 30 SW

Compare Temp1 with Ref1 33 SW

Pump1OFF 39 SW

Relay1 40 HW

Pump1 41 HW

Path-15 Read Temp2 and write to LCD Sen2 9 HW

OP2 11 HW

A/D Converter 12 HW

Microprocessor 13 HW

Temp2 Read 34 SW

Write Temp2 to LCD 35 SW

LCD 51 HW

Path-16 Read Temp2 and send to HOST Sen2 9 HW

OP2 11 HW

A/D Converter 12 HW

Microprocessor 13 HW

Temp2 Read 34 SW

Send Temp2 to HOST 36 SW

RS232C 52 HW

HOST 53 HW

Path-17 Compare Temp2 with Ref2

Temperature and set Pump2 ON

Sen2 9 HW

OP2 11 HW

A/D Converter 12 HW

Microprocessor 13 HW

Temp2 Read 34 SW

Compare Temp2 with Ref2 37 SW

Pump2 On 42 SW

Relay2 44 HW

Pump2 45 HW

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 8

Temperature and set Pump2 off OP2 11 HW

A/D Converter 12 HW

Microprocessor 13 HW

Temp2 Read 34 SW

Compare Temp2 with Ref2 37 SW

Pump2 Off 43 SW

Relay2 44 HW

Pump2 45 HW

Path-19 Compare Temp1 and Temp2

and write Temp mismatch on to

LCD

Sen2 9 HW

OP2 11 HW

A/D Converter 12 HW

Path-19 Compare Temp1 and Temp2

and write Temp mismatch on to

LCD

Microprocessor 13 HW

Temp2 Read 34 SW

Compare Temp1 with Temp2 46 SW

Write Temp1 and Temp2 Mismatch 47 SW

LCD 51 HW

Path-20 Compare Temp1 and Temp2

and set buzzer On

Sen2 9 HW

OP2 11 HW

A/D Converter 12 HW

Microprocessor 13 HW

Temp2 Read 34 SW

Compare Temp1 with Temp2 46 SW

Buzzer ON 48 SW

Buzzer 50 HW

Path-21 Compare Temp1 and Temp2

and set buzzer Off

Sen2 9 HW

OP2 11 HW

A/D Converter 12 HW

Microprocessor 13 HW

Temp2 Read 34 SW

Compare Temp2 with Ref2 37 SW

Compare Temp1 and Temp2 46 SW

Buzzer Off 49 SW

Buzzer 50 HW

TABLE II

TESTING METHODS AND LOCATIONS OF TESTING

Method ID Description Location

M1 Scaffolding HOST

M2 Simulation HOST

M3 Assert Macro HOST

M4 Third Party Tool HOST

M5 Logic Analysis TARGET

M6 In-Circuit Emulator HOST+TARGET

M7 Monitors HOST+TARGET

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 9

TABLE III

 TEST CASE TYPES

Test Case

Type

Number

Test Case Description
Test Method-ID

1.
Testing the hardware independent code simulating Input/output functions that deal with the
Hardware devices

M1

2. Testing for processing input fed by a single device through directly calling Interrupt service routines M1

3. Testing passage of time through calling the interrupt routine of the timer devices M1

4. Testing for the interaction between hardware devices M1

5. Testing for interaction of Task control code with hardware devices M1

6.
Testing for interaction of multiple tasks through control tasks to provide processing through the
same device

M1

7. Testing interaction among several devices M1

8. Testing the chain of tasks by way of simulating the occurrence of a sequence of events M1

9. Testing the chain of tasks by simulating the simultaneous occurrence of a set of events M1

10. Testing the tasks by simulating the occurrence of uncommon events M1

11.
Testing the interaction between the tasks with control task that deals with the devices by way of

bypassing the interrupts raised by the Hardware
M1

12.
Testing the process that several tasks initiates requests to be processed by a device and the device

raises an interrupt that processing is complete
M1

13. Testing for Time delay M1

14. Testing the communication between multiple instances of hardware independent code M1

15. Testing for the proper operation of resources such as Queues, Mail Boxes and Pipes M1

16.
Testing for the overflow condition i.e., trying to write to the Queue or Mail box or Pipe when it is
already full

M1

17. Testing for underflow condition i.e., trying to read a Queue, or Mail Box or Pipe when it is empty M1

18. Testing response time for each of the event based processing M2

19. Response time for processing the events that occur simultaneously M2

20. Testing significance of the bytes (Endean) M2

21. Testing processing 16 bit and 32 bit variables in an expression M2

22. Type casting M2

23. Testing for byte addressing M2

24. Testing for parity M2

25. Testing the built-in peripheral devices M2

26. Testing Reading from ROM M2

27. Testing Reading from RAM and writing into RAM M2

28. Testing Peripheral interface testing through DMA M2

29. Testing throughput M2

30. Testing proper execution of startup code M2

Test Case

Type

Number

Test Case Description
Test Method

Method-ID

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 10

31. Testing for proper identification of tasks with RTOS M2

32. To test whether memory pools are created properly M2

33.
To test whether the handles required related to Queues, Mail Boxes, Pipes, Events and Timing have
been created within the startup code

M2

34. To test the occurrence of shared data problem M2

35. Testing for the occurrence of interrupt priority inversion M2

36. Testing for the occurrence of dead locks M2

37. Testing for usage of proper devices addressed specially MAC addresses. M3

38. Testing for proper data bits related to the devices M3

39. Testing for proper setting of values for data bits M3

40. Testing for range of values to be contained in a variable M3

41. Testing for proper function calling sequences M3

42. Testing memory leaks due to the call to OS M4

43. Testing memory leaks due to the calls to third party tools M4

44. Testing for writing to the end of an array M4

45. Testing for usage of freed pointers M4

46. Testing for proper memory allocation without any overlapping as the system runs M4

47. Testing for writing to a Queue when it is full M4

48. Testing for reading from a Queue when it is empty M4

49. Testing for proper functional interaction M4

50. Testing for Task interactions M4

51. Testing for Stack allocation for every call M4

52. Testing for race condition M4

53. Testing for priority inversion M4

54. Testing for deadly embrace M4

55. Testing for passing of parameters due to function calls M4

56.
Testing for change of value of a variable or set of variables and also recording of peak values of the

variables
M4

57. Testing for change of values of the variables by triggering certain events M4

58. Testing for timing of the signals M5

59. Testing for occurrence of signals in a proper sequence M5

60. Testing for validity of the signals M5

61. Testing for proper fetching of addresses related to instructions M5

62. Testing for writing of proper values to the memory addresses M5

63.

Testing for the state of a signal when a clock input is either edge triggered or level triggered in

terms of address in the address lines, data in the data lines, Read/Write on the control lines and Read

enable/ Write enable signals

M5

64.
Testing for the timing of the execution of first instruction of an interrupt routine after asserting an

interrupt signal by peripheral devices.
M5

Test Case

Type

Number

Test Case Description
Test Method

Method-ID

65. Testing for the timing of accessing of a device through filters M5

66. To test the sequence of occurrence of a signal M5

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 11

67. Testing the in-built peripheral devices M6

68. Testing for the response time of a function M6

69. Testing for weak code which is not used by the application M6

70. Testing for changes in data at specified memory locations M6

71.
Testing for inter-task communication through Mail boxes, Queues and Pipes including the overflow

and underflow conditions
M6

72. Testing power saving requirements M6

73.
To switch off the power to microprocessor and to test switching on the power to Microprocessor

when any of the events occurs
M6

74. To test the powering on and off of the peripherals through software M6

75. Testing for proper execution of the code after turning on and off the power in power saving mode M6

76. To test proper processing the Key inputs M6

77. To test for proper display of output on LCD M6

78. Testing for scanning of multiple JTAG device connections M7

79. Testing for multiple debugging connections to JTAG devices M7

80. Testing for hardware system bring up M7

81. Testing for faulty devices early in the development life cycle M7

82. Test for value at memory address 1 >memory address 2 M1

83. Test for value at memory address 1 <memory address 2 M1

84. Test for value at memory address 1 = memory address 2 M1

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 12

TABLE IV

COMMAND LANGUAGE INTERFACE

Command Command Description

1ADR Testing for byte addressing

1BYT Testing for significance of bytes

1COV Processing for 16 bit and 32 bit variables in expression

1CST Testing for casting checking

1PAR Testing for parity checking

1RAA Reading from ROM and writing to RAM

1RES Testing for response time computation

1RRA Testing for reading from RAM

1THR Testing for throughput

4TCK Testing for change of variable due to occurrence of an event

4TIA Testing for task interactions

4TMA Testing for memory overlaps

4TMC Testing for memory leaks due to third party calls

4TML Testing for native memory leaks

4TMS Testing for memory leaks due to RTOS

4TPK Testing for peak value of a variable

4TPP Testing for proper parameter passing to the function call

4TSA Testing for proper stack allocation

5IEDT1 Testing for timing of signal

5IEDT2 Testing for validity of signals

5IEDT3 Testing for validity of signals in proper sequence

5OEDT Testing for timing of accessing of a device

6CHD Testing for change in data

6CHD1 Testing for Hardware bring up

6CHD2 Testing for power consumption

7FLT Testing of faulty devices

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 13

TABLE V

 INPUT VARIABLES ASSOCIATED WITH PROGRAM SLICES

Serial

Number

of the

Program

Slice

Name of the

Program Slice

Input

Variable-1

Input

Variable-2

Input

Variable-3

Input

Variable-4

Output

Variable-1, 2

Output Variable-

3,4

Type Name of

the

Variable

Type Name of

the

Variable

Type Name of

the

Variable

Type Name of

the

Variable

Type Name of

the

Variable

Type Name of

the

Variable

1. Write Initial

Messages to LCD

CHAR array1 CHAR array2 CHAR array3 CHAR array1 CHAR array3

CHAR array2

2. Write Password

Message to LCD

CHAR array4 CHAR array4

3. Read Key () CHAR key CHAR key

4. Write Key () CHAR tatkal CHAR “*”

5. Compare Password

()

CHAR tatkal CHAR Array5 INT passwdsta

6. Write Password

Mismatch to LCD

CHAR tatkal CHAR passkey INT array5

7. Request HOST for

Ref1

CHAR Array6 CHAR Array7 CHAR

array8 CHAR Array6 CHAR

array8

CHAR Array7

8. Read Ref1 – Read

from HOST

INT Digit0 INT Digit1 INT Digit0 INT Digit1

9. Request REF2 for

HOST

CHAR Array9 CHAR Array9

10. Read RefF2– Read

from HOST

INT Ascii0 INT Ascii1 INT Ascii0 INT Ascii1

11. Write ref1 to LCD CHAR Array12 CHAR Array13 CHAR Array12 CHAR Array13

12. Write ref2 to LCD CHAR Array12 CHAR Array13 CHAR Array12 CHAR Array13

13. ReadTemp1 INT Value1 INT Value2 INT Temp1 INT Temp1

14. Write Temp1 to

LCD

INT Temp1 CHAR Array10 INT Temp1

15. Send Temp1 to

HOST

INT Temp1 INT Temp1

16. CompareTemp1with

Ref1 ()

INT Temp1 INT Ref1 INT TT1 INT compsta

17. ProcessPump1On INT Temp1 INT rref1 INT PUMP1-

STA

PUMP1 BOOL PUMP1

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 14

Serial

Number

of the

Program

Slice

Name of the Program

Slice

Input

Variable-1

Input

Variable-2

Input

Variable-3

Input

Variable-4

Output Variable-1,

2

Output Variable-

3,4

Type Name of

the

Variable

Type Name of

the

Variable

Type Name of

the

Variable

Type Name of

the

Variable

Type Name of

the

Variable

Type Name of

the

Variable

18. ProcessPump1Off INT Temp1 INT rref1 INT Ref1 PUMP1 BOOL PUMP1

19. ReadTemp2 INT Value2 INT Value3 INT Temp1 INT Temp2

20. Write temp2 to LCD INT Temp2 CHAR Array11 INT Temp2

21. Send Temp2 to HOST INT Temp2 INT Temp2

22. CompareTemp2 With

Ref2

INT Temp2 INT rref2 INT TT2 INT compsta

23. Write Temp Mismatch

to LCD

INT Temp2 CHAR Array11 INT Temp1

24. ProcessPump2On INT Temp2 INT rref2 INT Ref2 PUMP2 BOOL PUMP2

25. ProcessPump2Off INT Temp2 INT rref2 INT Ref2 PUMP2 BOOL PUMP2

26. Process Temp1 and

Temp2

INT Temp1 INT Temp2 INT Temp1 INT Temp2

27. Process Buzzer On BOOL Buzzer Bool Buzzer

28. Process Buzzer Off BOOL Buzzer Bool Buzzer

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 15

TABLE VI

TEST CASE TYPE MAPPING AND GENERATED TEST CASES

Test Path

Number

Test

Path

Descript

ion

State on the path
State

serial

HW /

SW

State

Test Type

Serial

Number

Test Type Description

Input Variable

/

Command

Input

Value
Output Variable

Expected

output

value

Path -13 Compare

Temp1

with
Ref1

Tempera

ture and
set

Pump1

ON

Sen1 8 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-SENS1 SENS2-STA
0/1

58 Testing for Timing of the signals COM-5IEDT-SENS1 SENS2-TIME 0-50

59 Testing for occurrence of signals in a
proper sequence

COM-5IEDT3-
SENS1-SENS2

 SENS1-SENS2-SEQ 12/21

OP1 10 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-OP1 OP2-STA 0/1

60 Testing for validity of the signal COM-5IEDT2-OP1 OP2-SIGVAL 0/1

59 Testing occurrence of signals in a
proper sequence

COM-5IEDT3-OP1-
OP2

 OP1-OP2-SEQ 12/21

A/D Converter 12 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-ATOD ATOD-STA 0/1

60 Testing for validity of the signal COM-5IEDT2-
ATOS

 ATOD-SIGVAL 0/1

Microprocessor 13 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-MP MP-STA 0/1

70

Testing for changes in data at
specified at memory Locations

COM-6CHD #1001 #1001 0-255

Testing for changes in data at

specified at memory Locations

COM-6CHD #1002 #1002 0-255

Read Temp1 30 SW
13

Testing for Time delay COM-5IEDT-

ATOD-CH1

- TEMP1-TIME 100

40 Test for a range of values contained

in a variable
TEMP1 0-255 TEMP1-LCD 0-255

29 Testing Throughput COM-1THR-

ATOD-CH1

- TEMP1-THRU 10/Sec

 57 Testing for change of variable when

Temp1 is sensed
COM-SIEDT-

ATOD-CH1

LOW-

EDGE

TEMP1-LCD 0-255

21 Testing processing 16 bit and 32 Bits

for proper conversion
COM-1COV-

TEMP1

TEMP

2

TEMP1-WORD 16

68 Testing for response time COM-1RES-

TEMP2

 TEMP1-RES-LCD 75-100

Compare Temp1 with

Ref1

33 SW 82 Test for value at Memory address 1
> Memory address 2

TEMP1 35
PUMP2-ON 1

REF1 32

83 Test for value at Memory address 1

< Memory address 2

TEMP1 30
PUMP2-OFF 0

REF1 32

84 Test for value at Memory address 1

= Memory address 2

TEMP1 35
PUMP2-OFF 0

REF1 35

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 16

Test Path

Number

Test

Path

Descript

ion

State on the path
State

serial

HW /

SW

State

Test Type

Serial

Number

Test Type Description

Input Variable

/

Command

Input

Value
Output Variable

Expected

output

value

Path -13 Compare

Temp1
with

Ref1

Tempera
ture and

set

Pump1
ON

Pump1ON 38 SW

1

Testing the hardware independent

code simulating Input/output
functions that deal with the Hardware

devices

PUMP1-ON 1 PUMP1-ON TRUE

PUMP1-OFF 0 PUMP1-OFF FALSE

40
Testing range of values contained in a

variable
PUMP1-ON

0-1 PUMP1-VOL 5/12

68
Testing for response time COM-1RES-

PUMP1
- PUMP1-RES 100

Relay1 40 HW
81

Testing for Faulty devices early in the

development life cycle

COM- 7FLT-

RELAY1
- PUMP2-STA 0/1

Pump1 41 HW
81

Testing for Faulty devices early in the

development life cycle

COM-7FLT-PUMP1
0-1 REALY-STA 0/1

65
Testing for the timing of accessing of

a device through filters

COM-5OEDT-

PUMP1
- PUMP2-TIME 100

Path -14 Compare

Temp1

with
Ref1

Tempera

ture and
set

Pump1

off

Sen1 8 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-SENS1 SENS2-STA
0/1

58 Testing for Timing of the signals COM-5IEDT-SENS1 SENS2-TIME 0-50

59 Testing for occurrence of signals in a
proper sequence

COM-5IEDT3-
SENS1-SENS2

 SENS1-SENS2-SEQ 12/21

OP1 10 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-OP1 OP2-STA 0/1

60 Testing for validity of the signal COM-5IEDT2-OP1 OP2-SIGVAL 0/1

59 Testing occurrence of signals in a
proper sequence

COM-5IEDT3-OP1-
OP2

 OP1-OP2-SEQ 12/21

A/D Converter 12 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-ATOD ATOD-STA 0/1

60 Testing for validity of the signal COM-5IEDT2-
ATOS

 ATOD-SIGVAL 0/1

Microprocessor 13 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-MP MP-STA 0/1

 70

Testing for changes in data at

specified at memory Locations

COM-6CHD #1001 #1001 0-255

Testing for changes in data at

specified at memory Locations

COM-6CHD #1002 #1002 0-255

Read Temp1 30 SW
13

Testing for Time delay COM-5IEDT-

ATOD-CH1

- TEMP1-TIME 100

40 Test for a range of values contained

in a variable
TEMP1 0-255 TEMP1-LCD 0-255

29 Testing Throughput COM-1THR-

ATOD-CH1

- TEMP1-THRU 10/Sec

57 Testing for change of variable when

Temp1 is sensed
COM-SIEDT-

ATOD-CH1

LOW-

EDGE

TEMP1-LCD 0-255

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 17

Test Path

Number

Test

Path

Descript

ion

State on the path
State

serial

HW /

SW

State

Test Type

Serial

Number

Test Type Description

Input Variable

/

Command

Input

Value
Output Variable

Expected

output

value

Path -14 Compare

Temp1
with

Ref1

Tempera
ture and

set

Pump1
off

Read Temp1 21 Testing processing 16 bit and 32 Bits

for proper conversion
COM-1COV-

TEMP1

TEMP

2

TEMP1-WORD 16

68 Testing for response time COM-1RES-

TEMP2

 TEMP1-RES-LCD 75-100

Compare Temp1 with

Ref1

33 SW 82 Test for value at Memory address 1

> Memory address 2

TEMP1 35
PUMP2-ON 1

REF1 32

83 Test for value at Memory address 1

< Memory address 2

TEMP1 30
PUMP2-OFF 0

REF1 32

84 Test for value at Memory address 1
= Memory address 2

TEMP1 35
PUMP2-OFF 0

REF1 35

Path -14 Compare

Temp1
with

Ref1

Tempera
ture and

set

Pump1
off

Pump1OFF 38 SW

1

Testing the hardware independent

code simulating Input/output
functions that deal with the Hardware

devices

PUMP1-ON 1 PUMP1-ON TRUE

PUMP1-OFF 0 PUMP1-OFF FALSE

40
Testing range of values contained in a

variable
PUMP1-ON

0-1 PUMP1-VOL 5/12

68
Testing for response time COM-1RES-

PUMP1
- PUMP1-RES 100

Relay1 40 HW
81

Testing for Faulty devices early in the

development life cycle

COM- 7FLT-

RELAY1
- PUMP2-STA 0/1

Pump1 41 HW
81

Testing for Faulty devices early in the

development life cycle

COM-7FLT-PUMP1
0-1 REALY-STA 0/1

65
Testing for the timing of accessing of

a device through filters

COM-5OEDT-

PUMP1
- PUMP2-TIME 100

Path-17 Compare

Temp2

with
Ref2

Tempera

ture and
set

Pump2

on

Sen2 9 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-SENS2 SENS2-STA
0/1

58 Testing for Timing of the signals

COM-5IEDT-SENS2 SENS2-TIME 0-50

59 Testing for occurrence of signals in a

proper sequence

COM-5IEDT3-

SENS1-SENS2

 SENS1-SENS2-SEQ 12/21

OP2 11 HW 81 Testing for Faulty devices early in the
development life cycle

COM-7FLT-OP2 OP2-STA 0/1

60 Testing for validity of the signal COM-5IEDT2-OP2 OP2-SIGVAL 0/1

59 Testing occurrence of signals in a

proper sequence

COM-5IEDT3-OP1-

OP2

 OP1-OP2-SEQ 12/21

A/D Converter 12 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-ATOD ATOD-STA 0/1

60 Testing for validity of the signal COM-5IEDT2-

ATOS

 ATOD-SIGVAL 0/1

Microprocessor 13 HW 81 Testing for Faulty devices early in the
development life cycle

COM-7FLT-MP MP-STA 0/1

70

Testing for changes in data at

specified at memory Locations

COM-6CHD #1001 #1001 0-255

COM-6CHD #1002 #1002 0-255

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 18

Test Path

Number

Test

Path

Descript

ion

State on the path
State

serial

HW /

SW

State

Test Type

Serial

Number

Test Type Description

Input Variable

/

Command

Input

Value
Output Variable

Expected

output

value

Path-17 Compare

Temp2
with

Ref2

Tempera
ture and

set

Pump2
on

Temp2 Read

34 SW

13
Testing for Time delay COM-5IEDT-

ATOD-CH2

- TEMP2-TIME 100

40
Test for a range of values contained
in a variable

TEMP2 0-255 TEMP2-LCD 0-255

29
Testing Throughput COM-1THR-

ATOD-CH2

- TEMP2-THRU 10/Sec

57
Testing for change of variable when
Temp1 is sensed

COM-SIEDT-

ATOD-CH1

LOW-

EDGE

TEMP1-LCD 0-255

Path-17 Compare

Temp2

with
Ref2

Tempera

ture and
set

Pump2

on

Temp2 Read

34 SW

21
Testing processing 16 bit and 32 Bits

for proper conversion
COM-1COV-

TEMP2

TEMP

2

TEMP2-WORD 16

68
Testing for response time COM-1RES-

TEMP2

 TEMP2-RES-LCD 75-100

Compare Temp 2 with

Ref2

37 SW

82
Test for value at Memory address 1

> Memory address 2

TEMP2 35
PUMP2-ON 1

REF2 33

83
Test for value at Memory address 1

< Memory address 2

TEMP2 33
PUMP2-OFF 0

REF2 35

84
Test for value at Memory address 1
= Memory address 2

TEMP2 33
PUMP2-OFF 0

REF2 33

Pump2 On

42 SW

1

Testing the hardware independent

code simulating Input/output

functions that deal with the Hardware
devices

PUMP2-ON 1 PUMP2-ON TRUE

PUMP2-OFF 0 PUMP2-OFF FALSE

40
Testing range of values contained in a

variable
PUMP2-ON

0-1 PUMP2-VOL 5/12

68
Testing for response time COM-1RES-

PUMP2
- PUMP2-RES 100

Relay2
44 HW 81

Testing for Faulty devices early in the

development life cycle

COM- 7FLT-

RELAY2
- PUMP2-STA 0/1

Pump2

45 HW

81
Testing for Faulty devices early in the

development life cycle

COM-7FLT-PUMP2
0-1 REALY-STA 0/1

65
Testing for the timing of accessing of

a device through filters

COM-5OEDT-

PUMP2
- PUMP2-TIME 100

Path-18 Compare

Temp2

with
Ref2

Tempera

ture and
set

Pump2

off

Sen2 9 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-SENS2 SENS2-STA
0/1

58 Testing for Timing of the signals

COM-5IEDT-SENS2 SENS2-TIME 0-50

59 Testing for occurrence of signals in a

proper sequence

COM-5IEDT3-

SENS1-SENS2

 SENS1-SENS2-SEQ 12/21

OP2 11 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-OP2 OP2-STA 0/1

60 Testing for validity of the signal COM-5IEDT2-OP2 OP2-SIGVAL 0/1

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 19

Test Path

Number

Test

Path

Descript

ion

State on the path
State

serial

HW /

SW

State

Test Type

Serial

Number

Test Type Description

Input Variable

/

Command

Input

Value
Output Variable

Expected

output

value

Path-18 Compare

Temp2
with

Ref2

Tempera
ture and

set

Pump2
off

 59 Testing occurrence of signals in a

proper sequence

COM-5IEDT3-OP1-

OP2

 OP1-OP2-SEQ 12/21

A/D Converter 12 HW 81 Testing for Faulty devices early in the
development life cycle

COM-7FLT-ATOD ATOD-STA 0/1

60 Testing for validity of the signal COM-5IEDT2-

ATOS

 ATOD-SIGVAL 0/1

Microprocessor 13 HW 81 Testing for Faulty devices early in the
development life cycle

COM-7FLT-MP MP-STA 0/1

70

Testing for changes in data at

specified at memory Locations

COM-6CHD #1001 #1001 0-255

COM-6CHD #1002 #1002 0-255

Path-18 Compare
Temp2

with

Ref2
Tempera

ture and

set
Pump2

off

Temp2 Read

34 SW

13
Testing for Time delay COM-5IEDT-

ATOD-CH2

- TEMP2-TIME 100

40
Test for a range of values contained

in a variable
TEMP2 0-255 TEMP2-LCD 0-255

29
Testing Throughput COM-1THR-

ATOD-CH2

- TEMP2-THRU 10/Sec

57
Testing for change of variable when

Temp1 is sensed
COM-SIEDT-

ATOD-CH1

LOW-

EDGE

TEMP1-LCD 0-255

21
Testing processing 16 bit and 32 Bits
for proper conversion

COM-1COV-

TEMP2

TEMP

2

TEMP2-WORD 16

68
Testing for response time COM-1RES-

TEMP2

 TEMP2-RES-LCD 75-100

Compare Temp 2 with

Ref2

37 SW

82
Test for value at Memory address 1
> Memory address 2

TEMP2 35
PUMP2-ON 1

REF2 33

83
Test for value at Memory address 1

< Memory address 2

TEMP2 33
PUMP2-OFF 0

REF2 35

84
Test for value at Memory address 1

= Memory address 2

TEMP2 33
PUMP2-OFF 0

REF2 33

Pump2 ON

42 SW

1

Testing the hardware independent
code simulating Input/output

functions that deal with the Hardware

devices

PUMP2-ON 1 PUMP2-ON 1

PUMP2-OFF 0 PUMP2-OFF 0

40
Testing range of values contained in a

variable
PUMP2-ON

0-1 PUMP2-VOL 5/12

68
Testing for response time COM-1RES-

PUMP2
- PUMP2-RES 100

Relay2
44 HW 81

Testing for Faulty devices early in the

development life cycle

COM- 7FLT-

RELAY2
- PUMP2-STA 0/1

Pump2

45 HW

81
Testing for Faulty devices early in the

development life cycle

COM-7FLT-PUMP2
0-1 REALY-STA 0/1

65
Testing for the timing of accessing of

a device through filters

COM-5OEDT-

PUMP2
- PUMP2-TIME 100

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 20

Test Path

Number

Test

Path

Descript

ion

State on the path
State

serial

HW /

SW

State

Test Type

Serial

Number

Test Type Description

Input Variable

/

Command

Input

Value
Output Variable

Expected

output

value

Path-20 Compare

Temp1
and

Temp2

and set
buzzer

On

Sen2 9 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-SENS2 SENS2-STA
0/1

58 Testing for Timing of the signals

COM-5IEDT-SENS2 SENS2-TIME 0-50

59 Testing for occurrence of signals in a

proper sequence

COM-5IEDT3-

SENS1-SENS2

 SENS1-SENS2-SEQ 12/21

OP2 11 HW 81 Testing for Faulty devices early in the
development life cycle

COM-7FLT-OP2 OP2-STA 0/1

60 Testing for validity of the signal COM-5IEDT2-OP2 OP2-SIGVAL 0/1

59 Testing occurrence of signals in a

proper sequence

COM-5IEDT3-OP1-

OP2

 OP1-OP2-SEQ 12/21

A/D Converter 12 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-ATOD ATOD-STA 0/1

60 Testing for validity of the signal COM-5IEDT2-

ATOS

 ATOD-SIGVAL 0/1

Microprocessor 13 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-MP MP-STA 0/1

70 Testing for changes in data at

specified at memory Locations

COM-6CHD #1001 #1001 0-255

70 Testing for changes in data at

specified at memory Locations

COM-6CHD #1002 #1002 0-255

Temp-2 Read 34 SW

13

Testing for Time delay COM-5IEDT-

ATOD-CH2

- TEMP2-TIME 100

40 Test for a range of values contained

in a variable
TEMP2 0-255 TEMP2-LCD 0-255

29 Testing Throughput COM-1THR-

ATOD-CH2

- TEMP2-THRU 10/Sec

57 Testing for change of variable when

Temp1 is sensed
COM-SIEDT-

ATOD-CH1

LOW-

EDGE

TEMP1-LCD 0-255

21 Testing processing 16 bit and 32 Bits
for proper conversion

COM-1COV-

TEMP2

TEMP

2

TEMP2-WORD 16

68 Testing for response time COM-1RES-

TEMP2

 TEMP2-RES-LCD 75-100

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 21

Test Path

Number

Test

Path

Descript

ion

State on the path
State

serial

HW /

SW

State

Test Type

Serial

Number

Test Type Description

Input Variable

/

Command

Input

Value
Output Variable

Expected

output

value

Path-20 Compare

Temp1
and

Temp2

and set
buzzer

On

Compare Temp1 with

Temp 2

46 SW
13

Testing for Time delay COM-5IEDT-

ATOD-CH2

- TEMP2-TIME 100

34
Testing for shared data problem TEMP1 23 SHARED-TEMP1-

TEMP2-STA

0/1

TEMP2 23

82

Test for ABS (Memory address 1 -

Memory address 2) > 2

TEMP1 33
BUZZER-ON

1

TEMP2 36

83

Test for ABS (Memory address 1 -

Memory address 2) < 2

TEMP1 33
BUZZER-OFF

0

TEMP2 34

84
Test for value at Memory address 1
= Memory address 2

TEMP1 33
BUZZER-OFF

0

TEMP2 33

Buzzer ON 48

SW 1 Testing the hardware independent

code simulating Input/output

functions that deal with the Hardware
devices

TEMP1 33

BUZZER-ON 0/1
TEMP2 36

40

Testing range of values contained in a

variable
TEMP1 180 0-255 180

TEMP2 200 0-255 200

68 Testing for response time COM-1RES-

TEMP2-TEMP1
 3-5

Buzzer 50 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-

BUZZER

 BUZZER -STA 1

Path-21 Compare
Temp1

and

Temp2
and set

buzzer

Off

Sen2 9 HW 81 Testing for Faulty devices early in the
development life cycle

COM-7FLT-SENS2 SENS2-STA
0/1

58 Testing for Timing of the signals

COM-5IEDT-SENS2 SENS2-TIME 0-50

59 Testing for occurrence of signals in a
proper sequence

COM-5IEDT3-
SENS1-SENS2

 SENS1-SENS2-SEQ 12/21

OP2 11 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-OP2 OP2-STA 0/1

60 Testing for validity of the signal COM-5IEDT2-OP2 OP2-SIGVAL 0/1

59 Testing occurrence of signals in a

proper sequence

COM-5IEDT3-OP1-

OP2

 OP1-OP2-SEQ 12/21

A/D Converter 12 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-ATOD ATOD-STA 0/1

60 Testing for validity of the signal COM-5IEDT2-

ATOS

 ATOD-SIGVAL 0/1

Micro Processor 13 HW 81 Testing for Faulty devices early in the

development life cycle

COM-7FLT-MP MP-STA 0/1

70 Testing for changes in data at

specified at memory Locations

COM-6CHD #1001 #1001 0-255

70 Testing for changes in data at

specified at memory Locations

COM-6CHD #1002 #1002 0-255

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 6 November to December 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 22

Test Path

Number

Test

Path

Descript

ion

State on the path
State

serial

HW /

SW

State

Test Type

Serial

Number

Test Type Description

Input Variable

/

Command

Input

Value
Output Variable

Expected

output

value

Path-21 Compare

Temp1
and

Temp2

and set
buzzer

Off

Temp2 Read 34 SW
13

Testing for Time delay COM-5IEDT-

ATOD-CH2

- TEMP2-TIME 100

40 Test for a range of values contained
in a variable

TEMP2 0-255 TEMP2-LCD 0-255

29 Testing Throughput COM-1THR-

ATOD-CH2

- TEMP2-THRU 10/Sec

57 Testing for change of variable when
Temp1 is sensed

COM-SIEDT-

ATOD-CH1

LOW-

EDGE

TEMP1-LCD 0-255

21 Testing processing 16 bit and 32 Bits

for proper conversion
COM-1COV-

TEMP2

TEMP2 TEMP2-WORD 16

68 Testing for response time COM-1RES-

TEMP2

 TEMP2-RES-LCD 75-100

Compare Temp1 with

Temp 2

46 SW
13

Testing for Time delay COM-5IEDT-

ATOD-CH2

- TEMP2-TIME 100

34
Testing for shared data problem TEMP1 23 SHARED-TEMP1-

TEMP2-STA

0/1

TEMP2 23

82

Test for ABS (Memory address 1 -

Memory address 2) > 2

TEMP1 33
BUZZER-ON

1

TEMP2 36

83

Test for ABS (Memory address 1 -

Memory address 2) < 2

TEMP1 33
BUZZER-OFF

0

TEMP2 34

84
Test for value at Memory address 1
= Memory address 2

TEMP1 33
BUZZER-OFF

0

TEMP2 33

Buzzer OFF 48

SW 1 Testing the hardware independent

code simulating Input/output

functions that deal with the Hardware
devices

TEMP1 33

BUZZER-ON 0/1
TEMP2 36

40

Testing range of values contained in a

variable
TEMP1 180 0-255 180

TEMP2 200 0-255 200

68 Testing for response time COM-1RES-

TEMP2-TEMP1
 3-5

Buzzer 50 HW 81 Testing for Faulty devices early in the

development life cycle
COM-7FLT-

BUZZER
 BUZZER -STA 0

