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Abstract— Artificial immune system (AIS) mimics the superior 
properties of biological immune system and provides an effective 
method in intelligent computing and intelligent system designing. 
But the disease-causing mechanisms of immune pathology have 
led to sever security problems in artificial immune system. In the 
paper, we analyzed the basic principles of immune protection and 
immune pathology of biological system considering its 
application in artificial immune system. Then we take artificial 
immune defending system as an example to analyze the cause and 
potential influence of immune pathology on AIS. As to the 
different security problems from immunodeficiency, 
hypersensitivity and autoimmunity, we put forward 
corresponding measures to reinforce the security, robustness and 
stability of artificial immune system and thus effectively avoid 
these problems. 
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I.  INTRODUCTION  
Load forecasting is an essential procedure in the operation of 
power system. Several artificial intelligent based models have 
been used to perform the forecasting task. Based on the 
forecasted load, power system operators assigned to the 
generating units, the amount of electrical power to be 
generated. This is to ensure that the customer would receive 
continuous supply and at the same time the economical of the 
dispatch is maintained. Timely implementations of such 
decisions lead to the improvement of network reliability and 
hence, reduced the occurrence of equipment failures and 
blackouts [1]. The daily load demand is highly affected by 
factors such as time in a day, type of day (weekdays, weekend 
and holidays), and temperature, weather conditions. Therefore, 
the relationship between these factors and the load demand 
need to be determined so that forecast can be made as accurate 
as possible. Various techniques have been implemented to 
forecast the load demand. These approaches can be generally 
classified into two categories in accordance to the techniques 
employed. The classical approach of load forecasting, such as 
time series method, gray theory and least square methods are 
based on similarity in forecasting of future power load curve 
by using the foregone information [2]. The more recent 
approaches for load forecasting are based on Artificial 
Intelligent (AI) technique. Realizing that the electrical energy 
load pattern is heavily dependent on the non-linear variables 
such as temperature and weather, therefore the main task in 

the AI technique is to find a functional relationship between 
the nonlinear variables and the system load [3]. The future 
load is predicted by inserting the predicted variable 
information into the predetermined functional relationship. 
One of the AI techniques that are commonly used for 
performing load forecasting task is the Artificial Neural 
Network (ANN). ANN is a computational tool inspired by the 
network of neurons in biological nervous system. It is a 
network consisting of arrays of artificial neurons linked 
together with different weights of connection. The states of the 
neurons as well as the weights of connections among them 
evolve according to certain learning rules [3]. In other word, 
neural networks are nonlinear statistical modeling tools which 
can be used to find the relationship between input and output 
or to find patterns in vast database. ANN has been applied in 
statistical model development, adaptive control system, 
pattern recognition in data mining, and decision making under 
uncertainty [4]. It is able to learn how to perform a pattern 
recognition task by automatically changing the values of its 
weights. Since the past few decades, different types of 
learning algorithms for the ANN have been developed by 
many researchers. For instance, Hebbian learning and 
competitive learning were developed for unsupervised 
learning, while Least Mean Squares (LMS) and Back 
Propagation (BP) of error algorithms were developed for 
supervised learning [5]. Artificial Immune System (AIS) has 
emerged in the 1990s as a new branch in Artificial Intelligence 
and since then AIS has been used in various applications such 
as pattern recognition, fault detection, computer security and 
optimization [6]. The basic fundamental of the AIS is inspired 
from the vertebrae immune system. The natural immune 
system is an interesting subject from the computational 
perspective as it is distributed, diverse, self-organizing with 
recognition, learning and memory capabilities [7]. 

A. Biological Immune Pathology  
According to the difference of pathological mechanisms 

immune diseases can be categorized as the following. 
(1)Immunodeficiency: When the performance of the immune 
function is poor or completely out of work because of innate 
genetic deficiency or acquired deficiency from tissue-hurt, the 
body is abnormally prone to severe inflammation and tumor 
symptom. (2)Hypersensitivity: Immune memory will be 
produced after the first immune response, when the system is 
intruded by the same antigen for the second time, the 
functional disorder of the body or self-destroying of tissue 
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cells will probably arise, such is called hypersensitivity. 
(3)Autoimmunity: Long-term inflammation, physical and 
chemical factors can activate T and B cells that respond to 
self-antigens to produce immune response towards self-
tissues. During this course antibody killing self cells and 
hypersensitive lymphocytes will appear. Of the above three 
immune diseases, immunodeficiency has no killing effect on 
biological system, while autoimmunity and hypersensitivity 
will exert killing effect on biological system, and is called 
immune injury or allergic reaction. According to the 
difference in immune mechanism, immune injury can be 
classified into  

 Type immune injury,  

 Type immune allergic reaction is also called 
anaphylaxis. Since it takes place with high speed, 
it is also 

 Type immune allergic reaction is a kind of 
immediate hypersensitivity. 

 Type immune allergic reaction is also called cell 
toxin antibody reaction. It is related with the 
combination of antibody with antigen on the 
surface of target cells. The antigens can be the 
cell membrane and outer antigens or semi-
antigens on the surface of the cells. This type of 
allergic reaction will lead to cell injury with 
different mechanisms. 

 Type immune allergic reaction is also called 
immune complex mediated hypersensitivity. 
Immune complex is the generated with the 
combination of antigen with antibody, these 
immune complex will immediately cleared off by 
phagocyte cells. Yet, if the immune complex 
deposits on the blood vessel and leads to sever 
vessel inflammation, immune diseases will arise. 
The antigens that will lead to immune complex 
mediated hypersensitivity vary in type and 
property.  

 Type immune allergic reaction is also called 
lagging hypersensitivity, it is related with allergy 
causing T cells.  

In Type immune allergic reaction, phagocyte cells are 
usually the basic effecting immune cells. In cell mediated cell 
toxin reactions, allergy causing T cells have killing effect and 
will exert killing effect on the target cells. 

B. Influence of Immune Pathology on AIS  
Artificial immune system introduces the superior properties 

of biological immune system into the study of intelligent 
system, but the disease-causing mechanism of immune 
pathology has been transmitted into artificial immune system 
too. With the development of attacking techniques, the security 
problems from immune pathology have been more and more 
sever. Taking artificial immune security system as an example, 
we analyze the security problems and system flaws connected 
with immune pathology in artificial immune system. The 

security problems of from immune pathology can be classified 
as the following: (1) Security threats from immunodeficiency 
This kind of threats can be found in the following cases: if the 
attack properties in detector string are innately incomplete or 
mistaken under attack, the detectors generated by negative 
selection algorithm will suffer defense deficiency and will fail 
to identify certain attacks and insecure operations. Then the 
security system will probably develop “immune tolerance” to 
certain attacks, and security “vacuum phenomenon” will arise. 
(2) Security threats from hypersensitivity These security 
problems are similar with type � immune allergic reaction in 
immune system, if the threshold value of negative selection 
algorithm is inappropriate , many detectors with self antibody 
and killing effect will be released into security system. These 
improper detectors will produce abnormally frequent attack 
responses and the system resources will be harmfully taken up 
to react to these false attacks. A typical attack method of 
hypersensitivity is DoS (denial of service) attack. Because of 
the complexity in user behavior and operation, if the detector 
analyzes valid user activity with different operating mode or 
network packets with different protocols, the detectors will 
probably produce frequent intrusion responses. If the 
suspicious valid activities exceed certain amount, the security 
system will deny the access of these operations and even 
destroy software and hardware devices. (3)Security threats 
from autoimmunity This kind of security problems are 
complex, there are many different reasons for these problems 
and the symptom of these security problems vary greatly. The 
essential part in security system is the negative selection 
algorithm, and the self-matching unit in the algorithm is also 
essential in detector selecting. If self properties are incomplete 
in the self library, many detectors with self antibody will be 
released for duplicating. These abnormal detectors have 
mistaken matching mechanisms with normal activities and 
valid operation. They will accept attack or invalid operation, 
while identify valid operating as dangerous ones. Just like self-
destroying in biological immune system, the security system 
will deny normal operation and even take killing actions on 
system software and hardware [17-20]. To solve the above 
security problems and system flaws, we can introduce other 
artificial intelligent methods into AIS, such as evolutionary 
algorithms. With the intelligent optimizing method in 
evolutionary algorithms, we can improve the selection of 
detectors and avoid the problem of immunodeficiency and 
autoimmunity. In the meantime, biological treatment of 
immune pathology can also be an approach to avoid similar 
security problems and system flaws in artificial immune 
system. For example, medicine interfering is an effective 
method in immune treatment; similarly, in artificial immune 
system, we can also adjust the system operating and parameter 
selecting to improve the efficiency and preciseness of the 
system. 

II. ADAPTIVE IMMUNE LEARNING MODEL 

A. Tri-tier Immune Model of Artificial Immune System 
The adaptive immune tier is the second tier of the tri-tier 
immune model for the artificial immune system, and the first 
tier is the innate immune tier and the third tier is the parallel 
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immune tier [25-27]. The innate immune tier is comprised of 
two modules. The first module is used to detect the selfs and 
the non-selfs in the system that the artificial immune system 
protects. The second module is used to recognize the features 
of known non-selfs and classify the types of the known worms. 
The adaptive immune tier is comprised of two modules. The 
first one is used to learn features and types of the unknown 
worms with the knowledge about all the known worms. The 
second is used to eliminate the non-selfs that were detected. 

B. Model for Learning Unknown Worms 
The model for learning unknown worms is comprised of the 
feature space of known worms, the algorithm for reading the 
features of non-selfs, the algorithm for searching the most 
similar non-self, the unknown worm that is being recognized, 
and the result set of learning. Model for learning unknown 
worms Algorithm for reading features of non-selfs Algorithm 
for searching the most similar non-self Unknown worm that is 
being recognized Result set of learning Feature space of all the 
known worms Normal model Suppose the feature dimension 
of the known worm is q , the feature vector of the non-self c is 
denoted with, then the feature space of all the known worms is 
represented. For the unknown worm c, p-dimension features 
among its features are measured, and the known features are 
represented with , but the other features are unknown. Suppose 
the most similar known worm to the unknown worm is, the 
algorithm for searching the most similar worm is denoted 
with, then the process for learning the unknown worm can be 
represented.  
 
In the process for learning the unknown worm, the non-self is 
classified into the type of the most similar known worm to the 
unknown one, according to the feature vector of the unknown 
worm. The types of known worms are known and the amount 
of the known worms is limited. However, the unknown worm 
cannot be classified into any type of known worms, and a new 
type must be created for the unknown one at that time. With 
creation of new type repeated, the types of unknown worms 
may be unlimited but numerable. The dimension coordinate of 
the feature space for the worms is represented with, small balls 
are used to denote the non-selfs, and the big circles represent 
the type of the worms. 

 
We consider the following Immune field equations defined 
over an open bounded piece of network and /or feature space 

dR  . They describe the dynamics of the mean Immune 
of each of p node populations. 
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We give an interpretation of the various parameters and 
functions that appear in (1),  is finite piece of nodes and/or 
feature space and is represented as an open bounded set of 

dR . The vector r  and r  represent points in   . The 
function : (0,1)S R   is the normalized sigmoid function: 

  
1( ) (2)

1 zS z
e


  

It describes the relation between the input rate iv  of 
population i  as a function of the packets potential, for 
example, [ ( )].i i i i iV v S V h    We note V  the p   

dimensional vector 1( ,..., ).pV V The p  function 

, 1,..., ,i i p   represent the initial conditions, see below. We 

note   the  p   dimensional vector 1( ,..., ).p   The p  

function , 1,..., ,ext
iI i p  represent external factors from 

other network areas. We note extI  the p   dimensional 

vector 1( ,..., ).ext ext
pI I The p p  matrix of functions 

, 1,...,{ }ij i j pJ J   represents the connectivity between 

populations i  and ,j  see below. The p  real values 

, 1,..., ,ih i p  determine the threshold of activity for each 
population, that is, the value of the nodes potential 
corresponding to 50% of the maximal activity. The p real 

positive values , 1,..., ,i i p   determine the slopes of the 
sigmoids at the origin. Finally the p real positive values 

, 1,..., ,il i p   determine the speed at which each anycast 
node potential decreases exponentially toward its real value. 
We also introduce the function : ,p pS R R  defined by 

1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     and the 

diagonal p p  matrix 0 1( ,..., ).pL diag l l Is the intrinsic 
dynamics of the population given by the linear response of 

data transfer. ( )i
d l
dt
  is replaced by 2( )i

d l
dt
  to use the 

alpha function response. We use ( )i
d l
dt
  for simplicity 

although our analysis applies to more general intrinsic 
dynamics. For the sake, of generality, the propagation delays 
are not assumed to be identical for all populations, hence they 

are described by a matrix ( , )r r  whose element ( , )ij r r is 

the propagation delay between population j  at r  and 
population i  at .r  The reason for this assumption is that it is 
still unclear from anycast if propagation delays are 
independent of the populations. We assume for technical 
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reasons that   is continuous, that is 
20 ( , ).p pC R 

   
Moreover packet data indicate that   is not a symmetric 

function i.e., ( , ) ( , ),ij ijr r r r   thus no assumption is 
made about this symmetry unless otherwise stated. In order to 
compute the righthand side of (1), we need to know the node 
potential factor V  on interval [ ,0].T  The value of T  is 
obtained by considering the maximal delay: 

 ,, ( , )
max ( , ) (3)m i ji j r r

r r 


   

Hence we choose mT   
 

C. Mathematical Framework 
A convenient functional setting for the non-delayed packet 
field equations is to use the space 2 ( , )pF L R   which is a 
Hilbert space [1-7] endowed with the usual inner product: 

 
1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr




   

To give a meaning to (1), we defined the history space 
0([ ,0], )mC C F   with [ ,0]sup ( ) ,

mt t F    
which is the Banach phase space[14-20] associated with 
equation (3). Using the notation 

( ) ( ), [ ,0],t mV V t        we write (1) as  
.

0 1

0

( ) ( ) ( ) ( ), (2)
,
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Where  

 
1 : ,

(., ) ( , (., ))

L C F

J r r r d r  



   

  

Is the linear continuous operator[21-28]  satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the papers on this 

subject assume   infinite, hence requiring .m      
 
 
Proposition 1.0  If the following assumptions are satisfied. 

1. 2 2( , ),p pJ L R     

2. The external current 0 ( , ),extI C R F   

3. 2

0 2( , ),sup .p p
mC R  

 
     

Then for any ,C  there exists a unique solution 
1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  finite-time 
explosion[29 - 35]  is impossible for this delayed differential 
equation[36-47]. Nevertheless, a particular solution could 
grow indefinitely, we now prove that this cannot happen. 
 

D. Boundedness of Solutions 
A valid model of neural networks should only feature bounded 
packet node potentials.  
 
Theorem 1.0 All the trajectories are ultimately bounded by 

the same constant R  if max ( ) .ext
t R F

I I t
     

Proof :Let us defined :f R C R   as 
2

0 1
1( , ) (0) ( ) ( ), ( )
2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt
       

We note 1,...min i p il l   
 

2( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t       

Thus,  if 

 
2.

( ) 2 , ( , ) 0
2

def def
F

tF

p J I lRV t R f t V
l


 

       

 
Let us show that the open route of F  of center 0 and radius 

, ,RR B  is stable under the dynamics of equation. We know 

that ( )V t  is defined for all 0t s  and that 0f   on ,RB  

the boundary of RB . We consider three cases for the initial 

condition 0.V If 0 CV R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose that ,T R  

then ( )V T  is defined and belongs to ,RB  the closure of ,RB  

because  RB is closed, in effect to ,RB  we also have 

2 | ( , ) 0t T TF

d V f T V
dt

      because ( ) .RV T B  

Thus we deduce that for 0   and small enough, 

( ) RV T B   which contradicts the definition of T. Thus 

T R  and RB is stable.  Because f<0 on , (0)R RB V B   

implies that 0, ( ) Rt V t B   . Finally we consider the case 

(0) RV CB . Suppose that   0, ( ) ,Rt V t B    then 

20, 2 ,
F

dt V
dt

     thus ( )
F

V t  is monotonically 

decreasing and reaches the value of R in finite time when 
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( )V t  reaches .RB  This contradicts our assumption.  Thus  

0 | ( ) .RT V T B     
 

Proposition 1.1 : Let s  and t   be measured simple functions 

on .X  for ,E M  define 
 

( ) (1)
E

E s d     
Then   is a measure on M .  

( ) (2)
X X X

s t d s d td         
Proof : If s  and if 1 2, ,...E E  are disjoint members of M
whose union is ,E  the countable additivity of   shows that  

1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

n n

i i i i r
i i r

n

i i r r
r i r

E A E A E

A E E
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  



  

 

  

   

  

  

 
  

Also, ( ) 0,    so that   is not identically . 
Next, let  s  be as before, let 1,..., m   be the distinct values 

of  t,and let { : ( ) }j jB x t x    If ,ij i jE A B   the

( ) ( ) ( )
ij

i j ijE
s t d E        

and ( ) ( )
ij ij

i ij j ijE E
sd td E E           Thus (2) 

holds with ijE  in place of X . Since  X is the disjoint union 

of the sets (1 ,1 ),ijE i n j m     the first half of our 
proposition implies that (2) holds. 
 
 
Theorem 1.1: If K  is a compact set in the plane[6] whose 
complement is connected, if f  is a continuous complex 
function[48-52]  on K  which is holomorphic[53-61] in the 
interior of , and if 0,   then there exists a polynomial P  

such that ( ) ( )f z P z    for all z K .  If the 

interior of K is empty, then part of the hypothesis is 
vacuously satisfied, and the conclusion holds for every 

( )f C K . Note that  K need to be connected. 
Proof: By Tietze’s theorem[62-70], f  can be extended to a 
continuous function in the plane[6], with compact support. We 
fix one such extension and denote it again by f . For any 

0,   let ( )   be the supremum[71-90] of the numbers 

2 1( ) ( )f z f z  Where 1z  and 2z  are subject to the 

condition 2 1z z   . Since f  is uniformly continous, we 

have 
0

lim ( ) 0 (1)


 


  From now on,   will be 

fixed. We shall prove that there is a polynomial P  such that  
  
 ( ) ( ) 10,000 ( ) ( ) (2)f z P z z K      
By (1),   this proves the theorem. Our first objective is the 
construction of a function ' 2( ),cC R  such that for all z   

( ) ( ) ( ), (3)
2 ( )( )( ) , (4)

f z z

z

 

 


 

 
  

And 
1 ( )( )( ) ( ), (5)

X

z d d i
z


    
 


   

   

Where X  is the set of all points in the support of   whose 
distance from the complement of K  does not  . (Thus  X
contains no point which is “far within” K .) We construct 
as the convolution[91-101] of f  with a smoothing function 
A. Put ( ) 0a r   if ,r  put  
 

2
2

2 2

3( ) (1 ) (0 ), (6)ra r r 
 

   
  

And define 
( ) ( ) (7)A z a z

  
For all complex z . It is clear that ' 2( )cA C R . We claim that  

2

3

1, (8)
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24 2 , (10)
15
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A
 


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


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The constants are so adjusted in (6) that (8) holds.  (Compute 
the integral in polar coordinates), (9) holds simply because A  
has compact support. To compute (10), express A  in polar 

coordinates, and note that 0,A


    

 
',A ar

    
Now define 

2 2

( ) ( ) ( ) ( ) (11)
R R

z f z Ad d A z f d d           
  

Since f  and A  have compact support, so does  . Since  
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2

( ) ( )

[ ( ) ( )] ( ) (12)
R

z f z

f z f z A d d   

 

    

And ( ) 0A    if ,    (3) follows from (8). The 

difference quotients[102-110]  of A  converge boundedly to 
the corresponding partial derivatives[111-120], since 

' 2( )cA C R . Hence the last expression in (11) may be 
differentiated under the integral sign, and we obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

The last equality depends on (9). Now (10) and (13) give (4). 
If we write (13) with x  and y  in place of ,  we see 

that   has continuous partial derivatives[121-130][111-120], 
if we can show that 0   in ,G  where G  is the set of all 
z K  whose distance from the complement of K  exceeds .  
We shall do this by showing that  
 ( ) ( ) ( ); (14)z f z z G    
Note that 0f   in G , since f  is holomorphic[53-61] 
there. Now if ,z G  then z   is in the interior of K  for all 

  with .   The mean value property for harmonic 
functions[1]  therefore gives, by the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

  







  

  

 
 

  

For all z G  , we have now proved (3), (4), and (5) The 
definition of X  shows that X is compact and that X  can be 
covered by finitely many open discs 1,..., ,nD D  of radius 

2 ,  whose centers are not in .K  Since 2S K  is 

connected, the center of each jD  can be joined to   by a 

polygonal path in 2S K . It follows that each jD contains a 

compact connected set ,jE  of diameter at least 2 ,  so that 
2

jS E  is connected and so that .jK E     with 

2r  . There are functions 2( )j jg H S E   and constants 

jb  so that the inequalities[3]. 

 

2

2

50( , ) , (16)

1 4,000( , ) (17)

j

j

Q z

Q z
z z





 



 
 

   

Hold for jz E  and ,jD   if  
2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then  is an 

open set which contains .K  Put 1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 2 ,j n    
Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z       
And 

1( ) ( ) ( ) ( , ) ( 2 0 )

( )
X

F z R z d d

z

   




 



   

Since,  

1

1( ) ( )( ) ( , ) , (21)
i

j
j X

F z Q z d d   


     

(18) shows that F  is a finite linear combination [7]of the 
functions jg  and 2

jg . Hence ( ).F H   By (20), (4), and 
(5) we have  

2 ( )( ) ( ) | ( , )

1 | ( ) (22)

X

F z z R z

d d z
z

  


  


 

 



  

Observe that the inequalities[3] (16) and (17) are valid with 
R  in place of jQ  if X   and .z   Now fix  .z   , 

put ,iz e     and estimate the integrand[10] in (22) by 
(16) if 4 ,   by (17) if 4 .    The integral in (22) is 
then seen to be less than the sum of 

4

0

50 12 808 (23)d


   
 

 
  

 
   

And  
2

24

4,0002 2,000 . (24)d


   



   

Hence (22) yields 
( ) ( ) 6,000 ( ) ( ) (25)F z z z       
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Since ( ), ,F H K    and 2S K  is connected, 
Runge’s theorem [20] shows that F  can be uniformly 
approximated on K  by polynomials[30]. Hence (3) and (25) 
show that (2) can be satisfied. This completes the proof. 
 
Lemma 1.0 : Suppose ' 2( ),cf C R  the space of all 
continuously differentiable functions[5] in the plane[6], with 
compact support. Put  

1 (1)
2

i
x y

  
     

  

Then the following “Cauchy[8] formula” holds: 

2

1 ( )( )( )

( ) (2)
R

ff z d d
z

i

  
 

  


 



 

   

Proof: This may be deduced from Green’s[11] theorem. 
However, here is a simple direct proof: 
Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1( )( ) ( , ) (3)
2

i if e r
r r

  


       
  

The right side of (2) is therefore equal to the limit, as 0,   
of 

 
2

0

1 (4)
2

i d dr
r r





 



        

 
 

 
 
For each 0,r   is periodic in ,  with period 2 . The 
integral of /    is therefore 0, and (4) becomes 

2 2

0 0

1 1 ( , ) (5)
2 2

d dr d
r

 



    
 

 
 

     

As 0, ( , ) ( )f z      uniformly.  This gives (2)  
 
If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the condition ( ) . 
Conversely, 

,
( )( ) ( ),

nA
c X d X c d X finitesums   
   

  



 

  
�

  

and so if A  satisfies ( ) , then the subspace generated by the 

monomial[14]s ,X a  , is an ideal. The proposition 
gives a classification of the monomial[14] ideals in 

 1,... nk X X : they are in one to one correspondence with the 

subsets A  of n�  satisfying ( ) . For example, the 

monomial[14] ideals in  k X  are exactly the ideals 

( ), 1nX n  , and the zero ideal (corresponding to the empty 

set A ). We write |X A    for the ideal corresponding 

to A  (subspace generated by the ,X a  ). 
 
LEMMA 1.1.  Let S  be a subset of n� . The the ideal a  

generated by ,X S   is the monomial[14] ideal 
corresponding to   

 | ,
df

n nA some S       � �   

Thus, a monomial[14] is in a  if and only if it is divisible by 

one of the , |X S   

PROOF.   Clearly A  satisfies   , and |a X A   . 

Conversely, if A  , then n  �  for some S  , 

and X X X a     . The last statement follows from 

the fact that | nX X     � . Let nA �  

satisfy   . From the geometry[17] of  A , it is clear that 

there is a finite set of elements  1,... sS     of A such 

that   2| ,n
i iA some S       � �  (The 

'i s  are the corners of A ) Moreover, |
df

a X A   is 

generated by the monomial[14]s ,i
iX S   . 

 
DEFINITION 1.0.   For a nonzero ideal a  in  1 ,..., nk X X
, we let ( ( ))LT a  be the ideal generated by  

 ( ) |LT f f a   
 
LEMMA 1.2   Let a  be a nonzero ideal in   1 ,..., nk X X ; 

then ( ( ))LT a is a monomial[14] ideal, and it equals 

1( ( ),..., ( ))nLT g LT g  for some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as the ideal 
generated by the leading monomial[14]s (rather than the 
leading terms) of elements of a . 
 
THEOREM 1.2.  Every ideal a  in  1 ,..., nk X X is finitely 

generated; more precisely, 1( ,..., )sa g g  where 1,..., sg g
are any elements of a  whose leading terms generate ( )LT a   
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PROOF.   Let f a . On applying the division 
algorithm[22], we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X      , 

where either 0r   or no monomial[14] occurring in it is 
divisible by any ( )iLT g . But i i

r f a g a   , and 

therefore 1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , 
implies that every monomial[14] occurring in r  is divisible 
by one in ( )iLT g . Thus 0r  , and 1( ,..., )sg g g . 
 
DEFINITION 1.1.   A finite subset  1,| ..., sS g g  of an 

ideal a  is a standard (
..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, S is a 
standard basis if the leading term of every element of a is 
divisible by at least one of the leading terms of the ig . 
 
THEOREM 1.3  The ring 1[ ,..., ]nk X X  is Noetherian i.e., 
every ideal is finitely generated. 
 
PROOF. For  1,n   [ ]k X  is a principal ideal domain, 
which means that every ideal is generated by single element. 
We shall prove the theorem by induction on n . Note that the 
obvious map 1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every polynomial f  in 

n  variables 1,... nX X  can be expressed uniquely as a 

polynomial in nX  with coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r
n n n r nf X X a X X X a X X      

Thus the next lemma will complete the proof 
 
LEMMA 1.3.  If A  is Noetherian, then so also is [ ]A X   
PROOF.          For a polynomial 
 

1
0 1 0( ) ... , , 0,r r

r if X a X a X a a A a        

r  is called the degree of f , and 0a  is its leading coefficient. 
We call 0 the leading coefficient of the polynomial 0. 
 Let a  be an ideal in [ ]A X . The leading coefficients 

of the polynomials[30] in a  form an ideal 'a  in A ,  and 
since A  is Noetherian, 'a will be finitely generated. Let 

1,..., mg g  be elements of a  whose leading coefficients 

generate 'a , and let r be the maximum degree of ig . Now 

let ,f a  and suppose f  has degree s r , say, 

...sf aX   Then 'a a  , and so we can write 

, ,i ii

i i

a ba b A

a leading coefficient of g

 




  

Now 

, deg( ),is r
i i i if b g X r g

  has degree deg( )f  . 
By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a polynomial of 

degree t r . For each d r , let da  be the subset of A  
consisting of 0 and the leading coefficients of all 
polynomials[30] in a  of degree ;d  it is again an ideal in  A . 

Let ,1 ,,...,
dd d mg g  be polynomials[30] of degree d  whose 

leading coefficients generate da . Then the same argument as 

above shows that any polynomial df  in a  of degree d  can 

be written 1 ,1 ,mod( ,... )
dd d d d mf f g g  With 1df   

of degree 1d  . On applying this remark repeatedly we 
find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

       
1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )

rt m r r m mf g g g g g g
   

 and so the polynomials[30] 
01 0,,..., mg g  generate a   

 
One of the great successes of category theory in computer 
science has been the development of a “unified theory” of the 
constructions underlying denotational semantics. In the 
untyped  -calculus,  any term may appear in the function 
position of an application. This means that a model D of the 
 -calculus must have the property that given a term t  whose 
interpretation is ,d D  Also, the interpretation of a 
functional abstraction like x . x  is most conveniently 
defined as a function from Dto D  , which must then be 

regarded as an element of D. Let  : D D D    be the 
function that picks out elements of D to  represent elements of 

 D D  and  : D D D    be the function that 

maps elements of D to functions of D.  Since ( )f  is 
intended to represent the function f  as an element of D, it 
makes sense to require that ( ( )) ,f f    that is, 

 D Do id     Furthermore, we often want to view every 

element of D as representing some function from D to D and 
require that elements representing the same function be equal 
– that is   
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( ( ))

D

d d
or

o id

 

 




  

The latter condition is called extensionality. These conditions 
together imply that and   are inverses--- that is, D is 
isomorphic to the space of functions from D to D  that can be 
the interpretations of functional abstractions:  D D D   
.Let us suppose we are working with the untyped 

calculus  , we need a solution ot the equation 

 ,D A D D    where A is some predetermined 
domain containing interpretations for elements of C.  Each 
element of D corresponds to either an element of A or an 
element of  ,D D  with a tag. This equation can be 
solved by finding least fixed points of the function 

 ( )F X A X X    from domains to domains --- that 

is, finding domains X  such that   ,X A X X    and 
such that for any domain Y also satisfying this equation, there 
is an embedding of X to Y  --- a pair of maps 

R

f

f

X Y�   

Such that   
R

X
R

Y

f o f id
f o f id




  

Where f g  means that f approximates g  in some 
ordering representing their information content. The key shift 
of perspective from the domain-theoretic to the more general 
category-theoretic approach lies in considering F not as a 
function on domains, but as a functor on a category of 
domains. Instead of a least fixed point of the function, F. 
 
Definition 1.3: Let K be a category and :F K K  as a 
functor. A fixed point of F is a pair (A,a), where A is a K-
object and : ( )a F A A  is an isomorphism. A prefixed 
point of F is a pair (A,a), where A is a K-object and a is any 
arrow from F(A) to A 
Definition 1.4 : An chain   in a category K  is a diagram 
of the following form: 

1 2

1 2 .....
of f f

oD D D       
Recall that a cocone   of an chain    is a K-object X 

and a collection of K –arrows  : | 0i iD X i    such 

that 1i i io f    for all 0i  . We sometimes write 

: X   as a reminder of the arrangement of 's  

components Similarly, a colimit : X  is a cocone with 

the property that if ': X   is also a cocone then there 
exists a unique mediating arrow ':k X X  such that for all 

0,, i ii v k o  . Colimits of chains   are sometimes 

referred to as limco its  . Dually, an op chain   in K 
is a diagram of the following form: 

1 2

1 2 .....
of f f

oD D D    
 
A cone : X   of an 

op chain    is a K-object X and a collection of K-arrows 

 : | 0i iD i   such that for all 10, i i ii f o    . An  
op -limit of an op chain     is a cone : X   

with the property that if ': X  is also a cone, then there 
exists a unique mediating arrow ':k X X  such that for 
all 0, i ii o k    . We write k  (or just  ) for the 
distinguish initial object of K, when it has one, and A  
for the unique arrow from   to each K-object A. It is also 

convenient to write 
1 2

1 2 .....
f f

D D    to denote all of 

  except oD  and 0f . By analogy,    is  | 1i i  . For 

the images of   and   under F we write  
1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write iF  for the i-fold iterated composition of F – that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f    ,etc. 

With these definitions we can state that every monitonic 
function on a complete lattice has a least fixed point: 
 
Lemma 1.4. Let K  be a category with initial object   and let 

:F K K  be a functor. Define the chain    by 
2! ( ) (! ( )) (! ( ))

2( ) ( ) .........
F F F F F

F F
     

        

If both : D   and ( ) : ( ) ( )F F F D   are 
colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D   is the mediating arrow from ( )F    to the 

cocone  

  
 
 
Theorem 1.4 Let a DAG G given in which each node is a 
random variable, and let a discrete conditional probability 
distribution of each node given values of its parents in G be 
specified. Then the product of these conditional distributions 
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yields a joint probability distribution P of the variables, and 
(G,P) satisfies the Markov condition. 
 
Proof. Order the nodes according to an ancestral ordering. Let 

1 2, ,........ nX X X be the resultant ordering. Next define.  
 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...
.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa
P x pa P x pa

 
 

Where iPA is the set of parents of iX of in G and 

( | )i iP x pa is the specified conditional probability 
distribution. First we show this does indeed yield a joint 
probability distribution. Clearly, 1 20 ( , ,... ) 1nP x x x   for 
all values of the variables. Therefore, to show we have a joint 
distribution, as the variables range through all their possible 
values, is equal to one. To that end, Specified conditional 
distributions are the conditional distributions they notationally 
represent in the joint distribution. Finally, we show the 
Markov condition is satisfied. To do this, we need show for 
1 k n   that  

whenever 

( ) 0, ( | ) 0
( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa
and P x pa

then P x nd pa P x pa

 




 

Where kND is the set of nondescendents of kX of in G. Since 

k kPA ND , we need only show 

( | ) ( | )k k k kP x nd P x pa . First for a given k , order the 

nodes so that all and only nondescendents of kX precede kX
in the ordering. Note that this ordering depends on k , whereas 
the ordering in the first part of the proof does not. Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X
Let
D X X X



 





 

follows 
kd    

 
 
We define the thm cyclotomic field to be the field 

  / ( ( ))mQ x x
 
Where ( )m x is the thm cyclotomic 

polynomial.   / ( ( ))mQ x x  ( )m x  has degree ( )m

over Q since ( )m x has degree ( )m . The roots of 

( )m x  are just the primitive thm roots of unity, so the 

complex embeddings of   / ( ( ))mQ x x are simply the 

( )m maps  

 : / ( ( )) ,
1 , ( , ) 1,

( ) ,

k m

k
k m

Q x x C
k m k m where

x



 



 





  

m being our fixed choice of primitive thm root of unity. Note 

that ( )k
m mQ  for every ;k it follows that 

( ) ( )k
m mQ Q  for all k relatively prime to m . In 

particular, the images of the i coincide, so 

  / ( ( ))mQ x x is Galois over Q . This means that we can 

write ( )mQ  for   / ( ( ))mQ x x without much fear of 
ambiguity; we will do so from now on, the identification being 

.m x  One advantage of this is that one can easily talk 
about cyclotomic fields being extensions of one another,or 
intersections or compositums; all of these things take place 
considering them as subfield of .C  We now investigate some 
basic properties of cyclotomic fields. The first issue is whether 
or not they are all distinct; to determine this, we need to know 
which roots of unity lie in ( )mQ  .Note, for example, that if 

m is odd, then m is a 2 thm root of unity. We will show that 

this is the only way in which one can obtain any non- thm
roots of unity. 
 
LEMMA 1.5   If m divides n , then ( )mQ   is contained in 

( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ  so the 

result is clear 
 
LEMMA 1.6   If m and n are relatively prime, then  
  ( , ) ( )m n nmQ Q    
and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   
 

PROOF. One checks easily that m n  is a primitive thmn root 
of unity, so that  

( ) ( , )mn m nQ Q    
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    ( , ) : ( ) : ( :
( ) ( ) ( );

m n m nQ Q Q Q Q Q
m n mn
   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q    We know that ( , )m nQ   has degree 

( )mn  over  Q , so we must have  

  ( , ) : ( ) ( )m n mQ Q n     
and 

 ( , ) : ( ) ( )m n mQ Q m     
 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    
 

PROPOSITION 1.2 For any m and n  
 

 ,( , ) ( )m n m nQ Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common multiple and 
the greatest common divisor of m and ,n respectively. 

 
PROOF.    Write 1 1

1 1...... ....k ke fe f
k km p p and p p where the 

ip are distinct primes. (We allow i ie or f to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and
Q Q Q Q

Thus
Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 
An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 
Mutual information measures the information transferred 
when ix  is sent and iy  is received, and is defined as 

2

( )
( , ) log (1)

( )

i

i
i i

i

xP yI x y bits
P x

  

In a noise-free channel, each iy is uniquely connected to the 

corresponding ix  , and so they constitute an input –output pair 

( , )i ix y  for which 

 2
1( ) 1 ( , ) log
( )

i
i j

j i

xP and I x yy P x
  bits; that is, the 

transferred information is equal to the self-information that 
corresponds to the input ix  In a very noisy channel, the output 

iy and input ix would be completely uncorrelated, and so 

( ) ( )i
i

j

xP P xy   and also ( , ) 0;i jI x y  that is, there is no 

transference of information. In general, a given channel will 
operate between these two extremes. The mutual information 
is defined between the input and the output of a given channel. 
An average of the calculation of the mutual information for all 
input-output pairs of a given channel is the average mutual 
information: 

2
. .

(
( , ) ( , ) ( , ) ( , ) log

( )

i

j
i j i j i j

i j i j i

xP y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 
 bits per 

symbol . This calculation is done over the input and output 
alphabets. The average mutual information. The following 
expressions are useful for modifying the mutual information 
expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yxP x y P P y P P xy x
yP y P P xx

xP x P P yy

 









 

Then 
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.

2
.

2
.

2
.

2

2

( , ) ( , )

1( , ) log
( )

1( , ) log
( )

1( , ) log
( )

1( ) ( ) log
( )

1( ) log ( )
( )

( , ) ( ) ( )

i j
i j

i j
i j i

i j
ii j

j

i j
i j i

i
j

ji i

i
i i

I X Y P x y

P x y
P x

P x y xP y

P x y
P x

xP P yy P x

P x H X
P x

XI X Y H X H Y



 
  

 
 
 

  
 
 

 
 
 

    



 













 

Where 2,

1( ) ( , ) log
( )

i ji j
i

j

XH P x yY xP y

  is 

usually called the equivocation. In a sense, the equivocation 
can be seen as the information lost in the noisy channel, and is 
a function of the backward conditional probability. The 
observation of an output symbol jy provides 

( ) ( )XH X H Y  bits of information. This difference is the 

mutual information of the channel. Mutual Information: 
Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yxP P y P P xy x  

The mutual information fits the condition 
( , ) ( , )I X Y I Y X  

And by interchanging input and output it is also true that 

( , ) ( ) ( )YI X Y H Y H X   

Where 

2
1( ) ( ) log
( )j

j j

H Y P y
P y

  

This last entropy is usually called the noise entropy. Thus, the 
information transferred through the channel is the difference 
between the output entropy and the noise entropy. 
Alternatively, it can be said that the channel mutual 
information is the difference between the number of bits 
needed for determining a given input symbol before knowing 
the corresponding output symbol, and the number of bits 

needed for determining a given input symbol after knowing 
the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H Y   

As the channel mutual information expression is a difference 
between two quantities, it seems that this parameter can adopt 
negative values. However, and is spite of the fact that for some 

, ( / )j jy H X y  can be larger than ( )H X , this is not 
possible for the average value calculated over all the outputs: 

2 2
, ,

( ) ( , )
( , ) log ( , ) log

( ) ( ) ( )

i

j i j
i j i j

i j i ji i j

xP y P x y
P x y P x y

P x P x P y
   

Then 

,

( ) ( )
( , ) ( , ) 0

( , )
i j

i j
i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2
1

log ( ) 0
M

i
i

i i

QP
P

  

The above expression can be applied due to the factor 
( ) ( ),i jP x P y which is the product of two probabilities, so 

that it behaves as the quantity iQ , which in this expression is 

a dummy variable that fits the condition 1ii
Q  . It can be 

concluded that the average mutual information is a non-
negative number. It can also be equal to zero, when the input 
and the output are independent of each other. A related 
entropy called the joint entropy is defined as 

2
,

2
,

2
,

1( , ) ( , ) log
( , )

( ) ( )
( , ) log

( , )

1( , ) log
( ) ( )

i j
i j i j

i j
i j

i j i j

i j
i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 
 
Theorem 1.5: Entropies of the binary erasure channel (BEC) 
The BEC is defined with an alphabet of two inputs and three 
outputs, with symbol probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 
probabilities 

 
3 2

2 1

3
1

1
2

3
2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y yP p and Px x
yand P x
yand P px
yand P px

  





 
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Lemma 1.7. Given an arbitrary restricted time-discrete, 
amplitude-continuous channel whose restrictions are 
determined by sets nF and whose density functions exhibit no 
dependence on the state s , let n be a fixed positive integer, 
and ( )p x an arbitrary probability density function on 
Euclidean n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F . For any real 

number a, let 
( | )( , ) : log (1)

( )
p y xA x y a

p y
 

  
 

 

Then for each positive integer u , there is a code ( , , )u n 
such that 

   ( , ) (2)aue P X Y A P X F       
Where 
 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 

 

Proof: A sequence (1)x F such that 

 
 

1
(1)| 1

: ( , ) ;
x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)x
A . Having chosen 

(1) ( 1),........, kx x  and 1 1,..., kB B  , select kx F such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 
 

Set ( )

1

1k

k
k ix i

B A B


  , If the process does not terminate 

in a finite number of steps, then the sequences ( )ix and 
decoding sets , 1,2,..., ,iB i u form the desired code. Thus 
assume that the process terminates after t  steps. (Conceivably 

0t  ). We will show t u  by showing that  

   ( , )ate P X Y A P X F      . We proceed as 
follows.  

Let 

 
1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )
x

x

t
jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 

 
 

E. Algorithms 
Ideals.    Let A be a ring. Recall that an ideal a in A is a 
subset such that a is subgroup of A regarded as a group under 
addition; 

 ,a a r A ra A       
The ideal generated by a subset S of A is the intersection of all 
ideals A containing a ----- it is easy to verify that this is in fact 
an ideal, and that it consist of all finite sums of the form 

i i
r s  with ,i ir A s S  . When  1,....., mS s s , we 

shall write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set  | ,a b a a b b    is 

an ideal, denoted by a b . The ideal generated by  

 | ,ab a a b b  is denoted by ab . Note that 

ab a b  . Clearly ab consists of all finite sums i i
a b  

with ia a  and ib b , and if 1( ,..., )ma a a  and 

1( ,..., )nb b b , then 1 1( ,..., ,..., )i j m nab a b a b a b .Let a  
be an ideal of A. The set of cosets of a in A forms a ring 

/A a , and a a a  is a homomorphism : /A A a  . 

The map 1( )b b  is a one to one correspondence 
between the ideals of /A a  and the ideals of A  containing a
An ideal p  if prime if p A  and ab p a p    or 
b p . Thus p  is prime if and only if /A p  is nonzero and 
has the property that  0, 0 0,ab b a      i.e., 

/A p is an integral domain. An ideal m  is maximal if 
|m A  and there does not exist an ideal n  contained strictly 

between m and A . Thus m is maximal if and only if /A m  
has no proper nonzero ideals, and so is a field. Note that m  
maximal   m prime. The ideals of A B  are all of the 
form a b , with a  and b  ideals in A  and B . To see this, 
note that if c  is an ideal in  A B  and ( , )a b c , then 
( ,0) ( , )(1,0)a a b c   and (0, ) ( , )(0,1)b a b c  . This 
shows that c a b   with  

 | ( , )a a a b c some b b  
  

and  

   | ( , )b b a b c some a a  
 

 
Let A  be a ring. An A -algebra is a ring B  together with a 
homomorphism :Bi A B . A homomorphism of A -algebra 

B C  is a homomorphism of rings : B C   such that 
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( ( )) ( )B Ci a i a   for all . An  A -algebra B is said 
to be finitely generated ( or of finite-type over A) if there exist 
elements 1,..., nx x B  such that every element of B can be 

expressed as a polynomial in the ix  with coefficients in ( )i A
, i.e., such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring homomorphism 

A B  is finite, and B  is finitely generated as an A-
module. Let k  be a field, and let A be a k -algebra. If 1 0  
in A , then the map k A  is injective, we can identify k
with its image, i.e., we can regard k as a subring of A  . If 1=0 
in a ring R, the R is the zero ring, i.e.,  0R  . Polynomial 

rings.  Let  k  be a field. A monomial[14] in 1,..., nX X  is an 

expression of the form 1
1 ... ,naa

n jX X a N  . The total 

degree of the monomial[14] is ia . We sometimes 

abbreviate it by 1, ( ,..., ) n
nX a a   � . The elements of 

the polynomial ring  1,..., nk X X  are finite sums

1

1 1.... 1 ....... , ,n

n n

aa
a a n a a jc X X c k a  �

   
With the obvious notions of equality, addition and 
multiplication. Thus the monomial[14]s from basis for  

 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only units in it 
are the nonzero constant polynomials[30]. A polynomial 

1( ,..., )nf X X  is irreducible if it is nonconstant and has only 

the obvious factorizations, i.e., f gh g   or h  is 

constant. Division in  k X . The division algorithm[22] 

allows us to divide a nonzero polynomial into another: let f  

and g  be polynomials[30] in  k X with 0;g   then there 

exist unique polynomials[30]  ,q r k X  such that 

f qg r   with either 0r   or deg r  < deg g . Moreover, 
there is an algorithm for deciding whether ( )f g , namely, 
find r and check whether it is zero. Moreover, the Euclidean 
algorithm allows to pass from finite set of generators for an 
ideal in  k X to a single generator by successively replacing 
each pair of generators with their greatest common divisor. 

 
 (Pure) lexicographic ordering (lex). Here monomial[14]s are 
ordered by lexicographic(dictionary) order. More precisely, let 

1( ,... )na a   and 1( ,... )nb b   be two elements of n� ; 

then     and  X X  (lexicographic ordering) if, in 

the vector difference   � , the left most nonzero entry 
is positive. For example,  
 2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that this isn’t 
quite how the dictionary would order them: it would put 
XXXYYZZZZ  after XXXYYZ . Graded reverse 

lexicographic order (grevlex). Here monomial[14]s are 
ordered by total degree, with ties broken by reverse 
lexicographic ordering. Thus,    if i ia b  , or 

i ia b   and in    the right most nonzero entry is 
negative. For example:  

4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 
5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ  . 

 
Orderings on  1,... nk X X  . Fix an ordering on the 

monomial[14]s in  1,... nk X X . Then we can write an 

element f  of  1,... nk X X  in a canonical fashion, by re-
ordering its elements in decreasing order. For example, we 
would write 

2 2 3 2 24 4 5 7f XY Z Z X X Z      
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex       
or 

2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex      
Let  1,..., na X k X X

   , in decreasing order: 
0 1

0 1 0 1 0..., ..., 0f a X X 
         

  
Then we define. 

 The multidegree of f  to be multdeg( f )= 0 ;  

 The leading coefficient of f to be LC( f )=
0

a ; 

 The leading monomial[14] of  f to be LM( f ) = 
0X  ; 

 The leading term of f to be LT( f ) = 0

0
a X 
   

For the polynomial 24 ...,f XY Z   the multidegree is 
(1,2,1), the leading coefficient is 4, the leading monomial[14] 
is 2XY Z , and the leading term is  24XY Z . The division 
algorithm[22] in  1,... nk X X . Fix a monomial[14] 

ordering in 2� . Suppose given a polynomial f  and an 

ordered set 1( ,... )sg g  of polynomials[30]; the division 

algorithm[22] then constructs polynomials[30] 1,... sa a  and 

a A
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r   such that 1 1 ... s sf a g a g r      Where either 0r   
or no monomial[14] in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 1( ) | ( )LT g LT f , divide 

1g  into f  to get 

 1 1 1 1
1

( ), ,...,
( ) n

LT ff a g h a k X X
LT g

   
 

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not divisible by 

1( )LT g . Now divide 2g  into 1f , and so on, until 

1 1 1... s sf a g a g r      With 1( )LT r  not divisible by 

any 1( ),... ( )sLT g LT g   Step 2: Rewrite 1 1 2( )r LT r r  , 

and repeat Step 1 with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 'ia s  )   
Monomial[14] ideals. In general, an ideal a  will contain a 
polynomial without containing the individual terms of the 
polynomial; for example, the ideal 2 3( )a Y X   contains 

2 3Y X but not 2Y  or 3X . 
 

DEFINITION 1.5. An ideal a  is monomial[14] if 
c X a X a 
     

 all   with 0c  .  
PROPOSITION 1.3. Let a be a monomial[14] ideal, and let 

 |A X a  . Then A satisfies the condition 

, ( )nA        �   And a  is the k -

subspace of  1,..., nk X X  generated by the ,X A   . 

Conversely, of A  is a subset of n�  satisfying   , then the 

k-subspace  a  of  1,..., nk X X  generated by 

 |X A   is a monomial[14] ideal. 

 
PROOF.  It is clear from its definition that a monomial[14] 
ideal a  is the  k -subspace of  1,..., nk X X

  

generated by the set of monomial[14]s it contains. If 
X a 

 

and  1,..., nX k X X 
 . 

   
If a permutation is chosen uniformly and at random from the 

!n  possible permutations in ,nS  then the counts ( )n
jC  of 

cycles of length j  are dependent random variables. The joint 

distribution of ( ) ( ) ( )
1( ,..., )n n n

nC C C  follows from 
Cauchy[8]’s formula, and is given by 

( )

1 1

1 1 1[ ] ( , ) 1 ( ) , (1.1)
! !

j
nn

cn
j

j j j

P C c N n c jc n
n j c 

 
    

 
 

  
for nc � .  
 
Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1( ) 1 (1.4)
j

j

n

mn n n
mn

j j
jj j

m m

E C jm n
j  

     
             

 
  

Proof.   This can be established directly by exploiting 

cancellation of the form [ ] !/ 1/ ( )!jm
j j j jc c c m    when 

,j jc m  which occurs between the ingredients in 
Cauchy[8]’s formula and the falling factorials in the moments. 
Write jm jm . Then, with the first sum indexed by 

1( ,... ) n
nc c c  �  and the last sum indexed by  

1( ,..., ) n
nd d d  �  via the correspondence 

,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 11
( )!

j j

j

j
j j

j j

n n
m mn n

j j
cj j

mnn
j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 1( ),m n  

corresponding to the fact that if 0,n m   then 0jd   for 

,j n m   and a random permutation in n mS   must have 

some cycle structure 1( ,..., )n md d  . The moments of ( )n
jC   

follow immediately as 
 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n    
We note for future reference that (1.4) can also be written in 
the form  

[ ] [ ]( )

11 1
( ) 1 , (1.3)j j

n n n
m mn

j j j
jj j

E C E Z jm n
 

     
      

    
    

Where the jZ  are independent Poisson-distribution random 

variables that satisfy ( ) 1 /jE Z j   
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The marginal distribution of cycle counts provides a formula 
for the joint distribution of the cycle counts ,n

jC  we find the 

distribution of n
jC  using a combinatorial approach combined 

with the inclusion-exclusion formula. 
 
Lemma  1.8.   For 1 ,j n   

 [ / ]
( )

0
[ ] ( 1) (1.1)

! !

k ln j k
n l

j
l

j jP C k
k l

 



     

Proof.     Consider the set I  of all possible cycles of length 
,j  formed with elements chosen from  1,2,... ,n  so that 

[ ]/j jI n . For each ,I  consider the “property” G  of 

having ;  that is,  G is the set of permutations nS   
such that   is one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,...,n  not in   
must be permuted among themselves. To use the inclusion-
exclusion formula we need to calculate the term ,rS  which is 
the sum of the probabilities of the r -fold intersection of 
properties, summing over all sets of r distinct properties. 
There are two cases to consider. If the r properties are 
indexed by r cycles having no elements in common, then the 
intersection specifies how rj  elements are moved by the 
permutation, and there are ( )!1( )n rj rj n   permutations 

in the intersection. There are [ ] / ( !)rj rn j r  such intersections. 
For the other case, some two distinct properties name some 
element in common, so no permutation can have both these 
properties, and the r -fold intersection is empty. Thus 

[ ]

( )!1( )

1 11( )
! ! !

r
rj

r r

S n rj rj n
n rj n
j r n j r

  

  
  

Finally, the inclusion-exclusion series for the number of 
permutations having exactly k  properties is 

,
0
( 1)l

k l
l

k l
S

l 


 
  

 
   

Which simplifies to (1.1) Returning to the original hat-check 
problem, we substitute j=1 in (1.1) to obtain the distribution of 
the number of fixed points of a random permutation. For 

0,1,..., ,k n   

( )
1

0

1 1[ ] ( 1) , (1.2)
! !

n k
n l

l
P C k

k l





     

and the moments of ( )
1

nC  follow from (1.2) with 1.j   In 

particular, for  2,n   the mean and variance of ( )
1

nC are both 

equal to 1. The joint distribution of ( ) ( )
1( ,..., )n n

bC C  for any 

1 b n   has an expression similar to (1.7); this too can be 
derived by inclusion-exclusion. For any 1( ,..., ) b

bc c c  �  

with ,im ic   

1

( ) ( )
1

...

01 1

[( ,..., ) ]

1 1 1 1( 1) (1.3)
! !

i i

b

i

n n
b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l
 

 
 



          
     



    

The joint moments of the first b  counts ( ) ( )
1 ,...,n n

bC C  can be 
obtained directly from (1.2) and (1.3) by setting 

1 ... 0b nm m      
 

The limit distribution of cycle counts 
It follows immediately from Lemma 1.2 that for each fixed 

,j  as ,n   

( ) 1/[ ] , 0,1, 2,...,
!

k
n j

j
jP C k e k
k


     

So that ( )n
jC converges in distribution to a random variable 

jZ  having a Poisson distribution with mean 1/ ;j  we use the 

notation ( )n
j d jC Z  where (1/ )j oZ P j�   to describe 

this. Infact, the limit random variables are independent. 
 
Theorem 1.6   The process of cycle counts converges in 
distribution to a Poisson process of �  with intensity 1j . 
That is, as ,n   

( ) ( )
1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z   

Where the , 1, 2,...,jZ j   are independent Poisson-

distributed random variables with  
1( )jE Z
j

   

Proof.  To establish the converges in distribution one shows 
that for each fixed 1,b   as ,n    

 ( ) ( )
1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     
 
Error rates 
The proof of Theorem says nothing about the rate of 
convergence. Elementary analysis can be used to estimate this 
rate when 1b  . Using properties of alternating series with 
decreasing terms, for 0,1,..., ,k n   

( )
1 1

1 1 1( ) [ ] [ ]
! ( 1)! ( 2)!

1
!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 
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It follows that  
1 1

( )
1 1

0

2 2 1[ ] [ ] (1.11)
( 1)! 2 ( 1)!

n nn
n

k

n P C k P Z k
n n n

 




    

     

Since 
1

1
1 1 1[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!
eP Z n

n n n n n



     
    

  

We see from (1.11) that the total variation distance between 
the distribution ( )

1( )nL C  of ( )
1

nC  and the distribution 1( )L Z  

of 1Z  
 

Establish the asymptotics of ( )( )n
nA C     under conditions 

0( )A  and 01( ),B  where 

 
'

( ) ( )

1 1

( ) 0 ,
i i

n n
n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for some 
' 0.g    We start with the expression 

'

'
( ) 0

0

0
1

1

[ ( ) ][ ( )]
[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i
i n i

r j r

P T Z nP A C
P T Z n

E
ir


 
  






 
  

 


  

  

'
0

1 1

1

1 '
1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d i d i d
n

O n n


 



 







 
   

 



   

and 

  

'
0

1 1

1

1
1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d i d i d
n

O n n


 



 







 
   

 



  

Where  
'
1,2,7 ( )n  refers to the quantity derived from 'Z . It 

thus follows that ( ) (1 )[ ( )]n d
nP A C Kn  �  for a constant 

K , depending on Z  and the '
ir  and computable explicitly 

from (1.1) – (1.3), if Conditions 0( )A  and 01( )B  are satisfied 

and if 
'

( )g
i O i    from some ' 0,g   since, under these 

circumstances, both  
1 '

1,2,7 ( )n n  and   
1

1,2,7 ( )n n  tend 

to zero as .n   In particular, for polynomials[30] and 

square free polynomials[30], the relative error in this 
asymptotic approximation is of order 1n  if ' 1.g    
 
For 0 / 8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))
( , ),

TV

TV

d L C b L Z b

d L C b L Z b
n b




� �

  

Where  7,7 ( , ) ( / )n b O b n   under Conditions 0 1( ), ( )A D  

and 11( )B  Since, by the Conditioning Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
� �

  
It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))
( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]1 (1.4)
[ ( ) ]

TV

TV b b

bA r A

bn

n

d L C b L Z b
d L T C L T Z

P T Z r

P T Z n r
P T Z n





 

  
 

 



� �

  

Suppressing the argument Z  from now on, we thus obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
� �

 

0
0 0

[ ][ ] 1
[ ]
bn

b
r n

P T n rP T r
P T n 

  
   

 
  

[ /2]
0

0
/2 0 0

[ ][ ]
[ ]

n
b

b
r n r b

P T rP T r
P T n 


  

   

0
0

[ ]( [ ] [ ]
n

b bn bn
s

P T s P T n s P T n r
 

 
       
 
  

[ / 2]

0 0
/ 2 0

[ ] [ ]
n

b b
r n r

P T r P T r
 

      

 [ /2]

0
0 0

[ /2]

0 0
0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b
s n
n n

b bn n
s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n



  

    
 



     



 
 The first sum is at most 1

02 ;bn ET the third is bound by 

 

0 0/ 2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3 ,
[0,1]

b nn s n
P T s P T n

n b n
n P





 
 


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 

 

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 14 ( ) [ ] [ ]
[0,1] 2

12 ( )

[0,1]

n n

b b
r s

b

n n n P T r P T s r s
P

n ET
P n












 

 



  



 
  

Hence we may take 

 
 

 

10.81
07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6 ( / 2, ) (1.5)
[0,1]

b

n
n b n ET Z P

P

n b
P
















    
  



  

 
Required order under Conditions 0 1( ), ( )A D  and 11( ),B  if 

( ) .S     If not,    10.8 n  can be replaced by    10.11 n 

in the above, which has the required order, without the 
restriction on the ir  implied by ( )S    . Examining the 

Conditions  0 1( ), ( )A D  and 11( ),B it is perhaps surprising to 

find that 11( )B  is required instead of just 01( );B  that is, that 

we should need 1

2
( )a

ill
l O i 


   to hold for some 

1 1a  . A first observation is that a similar problem arises 

with the rate of decay of 1i  as well. For this reason, 1n  is 

replaced by 1n
�

. This makes it possible to replace condition 

1( )A  by the weaker pair of conditions 0( )A and 1( )D in the 

eventual assumptions needed for    7,7 ,n b  to be of order 

( / );O b n   the decay rate requirement of order 1i    is 

shifted from 1i  itself to its first difference. This is needed to 
obtain the right approximation error for the random mappings 
example. However, since all the classical applications make 
far more stringent assumptions about the 1, 2,i l   than are 

made in 11( )B . The critical point of the proof is seen where 
the initial estimate of the difference

( ) ( )[ ] [ 1]m m
bn bnP T s P T s    . The factor  10.10 ( ),n  

which should be small, contains a far tail element from 1n
�

 of 
the form 1 1( ) ( ),n u n   which is only small if 1 1,a   

being otherwise of order 11( )aO n    for any 0,   since 

2 1a   is in any case assumed. For / 2,s n  this gives rise 

to a contribution of order  11( )aO n     in the estimate of the 

difference [ ] [ 1],bn bnP T s P T s     which, in the 
remainder of the proof, is translated into a contribution of 

order 11( )aO tn    for differences of the form 

[ ] [ 1],bn bnP T s P T s     finally leading to a 

contribution of order 1abn    for any 0   in  7.7 ( , ).n b  

Some improvement would seem to be possible, defining the 
function g  by    ( ) 1 1 ,w s w s tg w       differences that are 

of the form [ ] [ ]bn bnP T s P T s t     can be directly 
estimated, at a cost of only a single contribution of the form 

1 1( ) ( ).n u n   Then, iterating the cycle, in which one 
estimate of a difference in point probabilities is improved to 
an estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a
bn bnP T s P T s t O n t n          for any 

0   could perhaps be attained, leading to a final error 

estimate in order  11( )aO bn n    for any 0  , to 

replace  7.7 ( , ).n b  This would be of the ideal order 

( / )O b n for large enough ,b  but would still be coarser for 
small .b   
 
 
With b and n  as in the previous section, we wish to show 
that  

 

1
0 0

7,8

1( ( [1, ]), ( [1, ])) ( 1) 1
2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



  

Where  
121 1

7.8 ( , ) ( [ ])n b O n b n b n        for any 

0   under Conditions 0 1( ), ( )A D  and 12( ),B with 12 . 
The proof uses sharper estimates. As before, we begin with the 
formula  

 
0

0 0

( ( [1, ]), ( [1, ]))

[ ][ ] 1
[ ]

TV

bn
b

r n

d L C b L Z b

P T n rP T r
P T n 

  
    


� �

  

Now we observe that  

 

[ /2]
0

0
0 00 0

0
[ /2] 1

2 2
0 0 0/2

0

10.5(2)2 2
0

[ ] [ ][ ] 1
[ ] [ ]

[ ]( [ ] [ ])

4 ( max [ ]) / [ ]

[ / 2]
3 ( / 2, )

8 , (1.1)
[0,1]

n
bn b

b
r rn n

n

b bn bn
s n

b b nn s n

b

b

P T n r P T rP T r
P T n P T n

P T s P T n s P T n r

n ET P T s P T n

P T n
n b

n ET
P





 

 



 



   
   

  

      

   

 

 

 


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We have   

     

0[ /2]

0
0

[ /2]

0
0

[ /2]

0 0
0

0 02
0 00

1
010.14 10.8

[ ]
[ ]

( [ ]( [ ] [ ]

( )(1 )[ ] [ ] )
1

1 [ ] [ ]
[ ]

( , ) 2( ) 1 4 ( )

6

bn

n
r

n

b bn bn
s

n

b n
s

b b
r sn

P T r
P T n

P T s P T n s P T n r

s rP T s P T n
n

P T r P T s s r
n P T n

n b r s n K n



   



 

 

 

 




 
       

 

  
   

 

   


    









 

 

  


0 10.14

2 2
0 0 10.8

( , )
[0,1]

4 1 4 ( )

3( ) , (1.2)
[0,1]

b

b

ET n b
nP

n ET K n

nP








  



   

  

 
The approximation in (1.2) is further simplified by noting that  
[ /2] [ /2]

0 0
0 0

( )(1 )[ ] [ ]
1

n n

b b
r s

s rP T r P T s
n


 

  
   

   

0
0

( )(1 )[ ]
1b

s

s rP T s
n


 

  
   
  

 

[ /2]

0 0
0 [ /2]

1 2 2
0 0 0

( ) 1
[ ] [ ]

1

1 ( 1 / 2 ) 2 1 , (1.3)

n

b b
r s n

b b b

s r
P T r P T s

n

n E T T n n ET



 
 

 

 
  



    

   

 
and then by observing that  

 

0 0
[ /2] 0

1
0 0 0 0

2 2
0

( )(1 )[ ] [ ]
1

1 ( [ / 2] ( 1 / 2 ))

4 1 (1.4)

b b
r n s

b b b b

b

s rP T r P T s
n

n ET P T n E T T n

n ET







 





  
   

    

 

 
 

 

Combining the contributions of (1.2) –(1.3), we thus find tha

 

    
 

1
0 0

0 0

7.8

1
010.5(2) 10.14

10.82 2
0

( ( [1, ]), ( [1, ]))

( 1) [ ] [ ]( )(1 )

( , )

3 ( / 2, ) 2 ( , )
[0,1]

24 1 ( )
2 4 3 1 (1.5)

[0,1]

TV

b b
r s

b

b

d L C b L Z b

n P T r P T s s r

n b

n b n ET n b
P

n
n ET

P









 


 






  






 
      

 


 

      
  

 

� �

 

The quantity  7.8 ( , )n b is seen to be of the order claimed 

under Conditions 0 1( ), ( )A D  and 12( )B , provided that 

( ) ;S     this supplementary condition can be removed if 

 10.8 ( )n   is replaced by  10.11 ( )n     in the definition of 

 7.8 ( , )n b , has the required order without the restriction on 

the ir  implied by assuming that ( ) .S    Finally, a direct 
calculation now shows that 

0 0
0 0

0 0

[ ] [ ]( )(1 )

1 1
2

b b
r s

b b

P T r P T s s r

E T ET





  

 
    

 

  

 

 
 
Example 1.0.  Consider the point (0,...,0) nO  � . For 
an arbitrary vector r , the coordinates of the point x O r   
are equal to the respective coordinates of the vector 

1: ( ,... )nr x x x  and 1( ,..., )nr x x . The vector r such as 
in the example is called the position vector or the radius vector 
of the point x  . (Or, in greater detail: r  is the radius-vector of 
x  w.r.t an origin O). Points are frequently specified by their 

radius-vectors. This presupposes the choice of O as the 
“standard origin”.   Let us summarize. We have considered 

n�  and interpreted its elements in two ways: as points and as 
vectors. Hence we may say that we leading with the two 
copies of  :n�  

n� = {points},      n� = {vectors}  
Operations with vectors: multiplication by a number, addition. 
Operations with points and vectors: adding a vector to a point 
(giving a point), subtracting two points (giving a vector). n�
treated in this way is called an n-dimensional affine space. (An 
“abstract” affine space is a pair of sets , the set of points and 
the set of vectors so that the operations as above are defined 
axiomatically). Notice that vectors in an affine space are also 
known as “free vectors”. Intuitively, they are not fixed at 
points and “float freely” in space. From n� considered as an 
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affine space we can precede in two opposite directions: n�  as 
an Euclidean space   n� as an affine space   n� as a 
manifold.Going to the left means introducing some extra 
structure which will make the geometry[17] richer. Going to 
the right means forgetting about part of the affine structure; 
going further in this direction will lead us to the so-called 
“smooth (or differentiable) manifolds”. The theory of 
differential forms does not require any extra geometry[17]. So 
our natural direction is to the right. The Euclidean structure, 
however, is useful for examples and applications. So let us say 
a few words about it: 
 
Remark 1.0.  Euclidean geometry[17].  In n�  considered 
as an affine space we can already do a good deal of 
geometry[17]. For example, we can consider lines and 
plane[6]s, and quadric surfaces like an ellipsoid. However, we 
cannot discuss such things as “lengths”, “angles” or “areas” 
and “volumes”. To be able to do so, we have to introduce 
some more definitions, making n� a Euclidean space. 
Namely, we define the length of a vector 1( ,..., )na a a  to 
be  

1 2 2: ( ) ... ( ) (1)na a a     
After that we can also define distances between points as 
follows: 

( , ) : (2)d A B AB


  

One can check that the distance so defined possesses natural 
properties that we expect: is it always non-negative and equals 
zero only for coinciding points; the distance from A to B is the 
same as that from B to A (symmetry); also, for three points, A, 
B and C, we have ( , ) ( , ) ( , )d A B d A C d C B   (the 
“triangle inequality”). To define angles, we first introduce the 
scalar product of two vectors 
 1 1( , ) : ... (3)n na b a b a b     

Thus ( , )a a a  . The scalar product is also denote by dot: 

. ( , )a b a b , and hence is often referred to as the “dot 
product” . Now, for nonzero vectors, we define the angle 
between them by the equality 

( , )cos : (4)a b
a b

    

The angle itself is defined up to an integral multiple 
of 2  . For this definition to be consistent we have to ensure 
that the r.h.s. of (4) does not exceed 1 by the absolute value. 
This follows from the inequality 

2 22( , ) (5)a b a b   
known as the Cauchy[8]–Bunyakovsky–Schwarz inequality 
(various combinations of these three names are applied in 
different books). One of the ways of proving (5) is to consider 

the scalar square of the linear combination ,a tb  where 

t R . As  ( , ) 0a tb a tb    is a quadratic polynomial in 
t  which is never negative, its discriminant must be less or 
equal zero. Writing this explicitly yields (5). The triangle 
inequality for distances also follows from the inequality (5). 

 
Example 1.1.    Consider the function ( ) if x x  (the i-th 

coordinate). The linear function idx  (the differential of ix  ) 
applied to an arbitrary vector h  is simply ih .From these 
examples follows that we can rewrite df  as 

1
1 ... , (1)n

n

f fdf dx dx
x x
 

  
 

  

which is the standard form. Once again: the partial 
derivatives[111-120] in (1) are just the coefficients (depending 
on x ); 1 2, ,...dx dx  are linear functions giving on an arbitrary 

vector h  its coordinates 1 2, ,...,h h  respectively. Hence 
  

1
( ) 1( )( )

... , (2)

hf x

n
n

fdf x h h
x

f h
x


   







 

 
Theorem   1.7.     Suppose we have a parametrized curve 

( )t x t  passing through 0
nx  �  at 0t t  and with the 

velocity vector 0( )x t   Then  

0 0 0
( ( )) ( ) ( ) ( )( ) (1)df x t t f x df x
dt       

 
Proof.  Indeed, consider a small increment of the parameter 

0 0:t t t t  , Where 0t  . On the other hand, we 

have  0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for an 

arbitrary vector h , where ( ) 0h   when 0h   . 
Combining it together, for the increment of ( ( ))f x t   we 
obtain 

0 0

0

0

( ( ) ( )
( )( . ( ) )

( . ( ) ). ( )
( )( ). ( )

f x t t f x
df x t t t

t t t t t t
df x t t t

 

    

 

  

    

        

    

     

For a certain ( )t   such that ( ) 0t   when 0t   

(we used the linearity of 0( )df x ). By the definition, this 
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means that the derivative of ( ( ))f x t  at 0t t  is exactly

0( )( )df x  . The statement of the theorem can be expressed 
by a simple formula: 

1
1

( ( )) ... (2)n
n

df x t f fx x
dt x x

 
  
 

  

 
To calculate the value Of df  at a point 0x  on a given vector 

  one can take an arbitrary curve passing Through 0x  at 0t  

with   as the velocity vector at 0t and calculate the usual 

derivative of ( ( ))f x t  at 0t t . 
 

Theorem 1.8.  For functions , :f g U  � , ,nU  �   

 
( ) (1)
( ) . . (2)

d f g df dg
d fg df g f dg

  
 

   

 
Proof. Consider an arbitrary point 0x  and an arbitrary vector 

  stretching from it. Let a curve ( )x t  be such that 

0 0( )x t x  and 0( )x t  .  

Hence 0( )( )( ) ( ( ( )) ( ( )))dd f g x f x t g x t
dt

     

at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))dd fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately follow from 
the corresponding formulae for the usual derivative Now, 
almost without change the theory generalizes to functions 
taking values in  m�  instead of � . The only difference is 
that now the differential of a map : mF U  �  at a point x  
will be a linear function taking vectors in n�  to vectors in 

m� (instead of � ) . For an arbitrary vector | ,nh �   
 

( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h  . We have  
1( ,..., )mdF dF dF  and  

1
1

1 1

11

1

...

....

... ... ... ... (4)

...

n
n

n

nm m

n

F FdF dx dx
x x

F F
dxx x

dxF F
x x

 
  
 

  
     

   
         

  

 
In this matrix notation we have to write vectors as vector-
columns. 

 
Theorem 1.9. For an arbitrary parametrized curve ( )x t  in 

n� , the differential of a   map : mF U  �  (where 
nU  � ) maps the velocity vector ( )x t  to the velocity 

vector of the curve ( ( ))F x t  in :m�   
.( ( )) ( ( ))( ( )) (1)dF x t dF x t x t

dt
     

 
Proof.  By the definition of the velocity vector, 

.
( ) ( ) ( ). ( ) (2)x t t x t x t t t t          

Where ( ) 0t    when 0t  . By the definition of the 
differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h      

Where ( ) 0h   when 0h  . we obtain  
.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 
For some ( ) 0t    when 0t  . This precisely means 

that 
.

( ) ( )dF x x t  is the velocity vector of ( )F x . As every 
vector attached to a point can be viewed as the velocity vector 
of some curve passing through this point, this theorem gives a 
clear geometric picture of dF  as a linear map on vectors. 

   
Theorem 1.10 Suppose we have two maps :F U V  and 

: ,G V W  where , ,n m pU V W  � � �  (open 
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domains). Let : ( )F x y F x . Then the differential of 
the composite map :GoF U W  is the composition of the 
differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   
 

Proof.   We can use the description of the differential 

.Consider a curve ( )x t  in n�  with the velocity vector 
.
x . 

Basically, we need to know to which vector in  p� it is taken 
by ( )d GoF . the curve ( )( ( ) ( ( ( ))GoF x t G F x t . By the 
same theorem, it equals the image under dG  of the Anycast 
Flow vector to the curve ( ( ))F x t  in m� . Applying the 
theorem once again, we see that the velocity vector to the 

curve ( ( ))F x t is the image under dF of the vector 
.
( )x t . 

Hence 
. .

( )( ) ( ( ))d GoF x dG dF x   for an arbitrary vector 
.
x  . 

 
Corollary 1.0.    If we denote coordinates in n� by 

1( ,..., )nx x  and in m� by 1( ,..., )my y , and write 

1
1

1
1

... (1)

... , (2)

n
n

n
n

F FdF dx dx
x x
G GdG dy dy
y y

 
  
 
 

  
 

  

Then the chain rule can be expressed as follows: 
1

1( ) ... , (3)m
m

G Gd GoF dF dF
y y
 

  
 

  

Where idF  are taken from (1). In other words, to get 
( )d GoF  we have to substitute into (2) the expression for 

i idy dF  from (3). This can also be expressed by the 
following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F
dxy y x x

d GoF
dxG G F F

y y x x

     
                                  

 

 
i.e., if dG  and dF  are expressed by matrices of partial 
derivatives[111-120], then ( )d GoF  is expressed by the 
product of these matrices. This is often written as  

 

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z
y yx x

z z z z
x x y y

y y
x x

y y
x x

    
        
  
                

  
   
 
      

 

Or 

1
, (6)

im

a i a
i

z z y
x y x

 



  


     

Where it is assumed that the dependence of my�  on 
nx�  is given by the map F , the dependence of pz�  

on my�  is given by the map ,G  and the dependence of  
pz � on nx� is given by the composition GoF .  

 
Definition 1.6.  Consider an open domain nU  � . Consider 
also another copy of n� , denoted for distinction n

y� , with 

the standard coordinates 1( ... )ny y . A system of coordinates 
in the open domain U  is given by a map : ,F V U  

where n
yV  �  is an open domain of n

y� , such that the 
following three conditions are satisfied :  

(1) F  is smooth; 
(2) F  is invertible; 

(3) 1 :F U V   is also smooth 
 

The coordinates of a point x U  in this system are the 
standard coordinates of 1( ) n

yF x �  
In other words,  

1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y   

Here the variables 1( ..., )ny y  are the “new” coordinates of 
the point x   

 
Example  1.2.     Consider a curve in 2�  specified in polar 
coordinates as  

( ) : ( ), ( ) (1)x t r r t t     
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We can simply use the chain rule. The map ( )t x t  can be 
considered as the composition of the maps  

( ( ), ( )), ( , ) ( , )t r t t r x r    . Then, by the chain 
rule, we have  

. . .
(2)dx x dr x d x xx r

dt r dt dt r



 

   
    

   
   

Here 
.
r  and 

.
  are scalar coefficients depending on t , 

whence the partial derivatives[111-120] ,x x
r 

 
    are 

vectors depending on point in 2� . We can compare this with 

the formula in the “standard” coordinates: 
. . .

1 2x e x e y  . 

Consider the vectors   ,x x
r 

 
  . Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x
r
x r r

 

 








 


  

From where it follows that these vectors make a basis at all 
points except for the origin (where 0r  ). It is instructive to 
sketch a picture, drawing vectors corresponding to a point as 

starting from that point. Notice that  ,x x
r 

 
   are, 

respectively, the velocity vectors for the curves ( , )r x r    

0( )fixed   and 0( , ) ( )x r r r fixed   . We can 
conclude that for an arbitrary curve given in polar coordinates 

the velocity vector will have components 
. .

( , )r   if as a basis 

we take : , : :r
x xe er  
      

. . .
(5)rx e r e      

A characteristic feature of the basis ,re e  is that it is not 
“constant” but depends on point. Vectors “stuck to points” 
when we consider curvilinear coordinates. 

 
Proposition  1.3.   The velocity vector has the same 
appearance in all coordinate systems. 
Proof.        Follows directly from the chain rule and the 
transformation law for the basis ie .In particular, the elements 

of the basis ii
xe x



 (originally, a formal notation) can be 

understood directly as the velocity vectors of the coordinate 
lines 1( ,..., )i nx x x x   (all coordinates but ix  are fixed). 
Since we now know how to handle velocities in arbitrary 
coordinates, the best way to treat the differential of a map 

: n mF � �  is by its action on the velocity vectors. By 
definition, we set 

0 0 0
( ) ( ( ))( ) : ( ) ( ) (1)dx t dF x tdF x t t

dt dt
   

Now 0( )dF x  is a linear map that takes vectors attached to a 

point 0
nx  �  to vectors attached to the point ( ) mF x �   

1
1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n
n

n

m
nm m

n

F FdF dx dx
x x

F F
dxx x

e e
dxF F

x x

 
  
 

  
     
  
         

  

In particular, for the differential of a function we always have  
1

1 ... , (3)n
n

f fdf dx dx
x x
 

  
 

  

Where ix  are arbitrary coordinates. The form of the 
differential does not change when we perform a change of 
coordinates. 

 
Example  1.3   Consider a 1-form in 2�  given in the 
standard coordinates: 

 
A ydx xdy     In the polar coordinates we will have 

cos , sinx r y r   , hence 
cos sin
sin cos

dx dr r d
dy dr r d

  
  

 
 

  

Substituting into A , we get 

2 2 2 2

sin (cos sin )
cos (sin cos )
(sin cos )

A r dr r d
r dr r d
r d r d

   
   

   

  
 

  

  

Hence  2A r d  is the formula for A  in the polar 
coordinates. In particular, we see that this is again a 1-form, a 
linear combination of the differentials of coordinates with 
functions as coefficients. Secondly, in a more conceptual way, 
we can define a 1-form in a domain U  as a linear function on 
vectors at every point of U : 

1
1( ) ... , (1)n

n         

If i
ie  , where ii

xe x



. Recall that the 

differentials of functions were defined as linear functions on 
vectors (at every point), and  
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( ) (2)i i i
j jj

xdx e dx
x


    

    at every point 

x .  
 
Theorem  1.9.   For arbitrary 1-form   and path  , the 

integral 


  does not change if we change parametrization of 

  provide the orientation remains the same. 

Proof: Consider '( ( )), dxx t
dt

  and  '
'( ( ( ))), dxx t t

dt
  

As 

'
'( ( ( ))), dxx t t

dt
 = '

' '( ( ( ))), . ,dx dtx t t
dt dt

   

 
 
 
Let p  be a rational prime and let ( ).pK  �  We write   

for p  or this section. Recall that K  has degree 

( ) 1p p    over .�  We wish to show that  .KO  �  

Note that   is a root of 1,px   and thus is an algebraic 

integer; since K  is a ring we have that   .KO �  We 
give a proof without assuming unique factorization of ideals. 
We begin with some norm and trace computations. Let j  be 

an integer. If j is not divisible by ,p  then j  is a primitive 
thp  root of unity, and thus its conjugates are 

2 1, ,..., .p     Therefore 
 

2 1
/ ( ) ... ( ) 1 1j p

K pTr             �   

If p  does divide ,j  then 1,j   so it has only the one 

conjugate 1, and  / ( ) 1j
KTr p  �  By linearity of the 

trace, we find that  
2

/ /

1
/

(1 ) (1 ) ...

(1 )
K K

p
K

Tr Tr

Tr p

 

 

   

  
� �

�

 

We also need to compute the norm of 1  . For this, we use 
the factorization  

 
1 2

2 1

... 1 ( )

( )( )...( );

p p
p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  
 2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ), this shows 

that  / (1 )KN p �  The key result for determining the 

ring of integers KO  is the following. 
 
LEMMA 1.9 
  (1 ) KO p  � �   

Proof.  We saw above that p  is a multiple of (1 )  in 

,KO  so the inclusion (1 ) KO p  � �  is immediate.  
Suppose now that the inclusion is strict. Since 
(1 ) KO � is an ideal of �  containing p�  and p� is 

a maximal ideal of � , we must have  (1 ) KO  � �  
Thus we can write  1 (1 )     

For some .KO   That is, 1   is a unit in .KO   
 
COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p  � �   
PROOF.       We have  
 

/ 1 1

1 1 1 1

1
1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p
p

Tr        

       

     



 




     

    

    

�

 

Where the i  are the complex embeddings of K  (which we 
are really viewing as automorphisms of K ) with the usual 
ordering.  Furthermore, 1 j  is a multiple of 1   in KO  

for every 0.j   Thus 

/ ( (1 )) (1 )K KTr O    �  
Since the trace is also a 

rational integer. 
 
PROPOSITION 1.4  Let p  be a prime number and let 

| ( )pK  �  be the thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x  � �  Thus 21, ,..., p
p p    is an 

integral basis for KO . 

PROOF.    Let   KO   and write 
2

0 1 2... p
pa a a   
      With .ia �  Then 

 
2

0 1

2 1
2

(1 ) (1 ) ( ) ...

( )p p
p

a a

a

    

  


     

 
  

By the linearity of the trace and our above calculations we find 
that  / 0( (1 ))KTr pa  �  We also have  
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/ ( (1 )) ,KTr p  � � so 0a �   Next consider the 
algebraic integer  

1 3
0 1 2 2( ) ... ;p

pa a a a    
      This is an 

algebraic integer since 1 1p    is. The same argument as 

above shows that 1 ,a �  and continuing in this way we find 

that all of the ia  are in � . This completes the proof. 
  
Example 1.4   Let K  � , then the local ring ( )p�  is simply 

the subring of �  of rational numbers with denominator 

relatively prime to p . Note that this ring   ( )p� is not the 

ring p� of p -adic integers; to get  p� one must complete 

( )p� . The usefulness of ,K pO  comes from the fact that it has 
a particularly simple ideal structure. Let a be any proper ideal 
of ,K pO  and consider the ideal Ka O  of .KO  We claim 

that ,( ) ;K K pa a O O     That is, that a  is generated by the 

elements of a  in .Ka O  It is clear from the definition of an 

ideal that ,( ) .K K pa a O O   To prove the other inclusion, 

let   be any element of a . Then we can write /    

where KO   and .p   In particular, a   (since 

/ a    and a  is an ideal), so KO   and .p   so 

.Ka O    Since ,1/ ,K pO   this implies that 

,/ ( ) ,K K pa O O      as claimed.We can use this 

fact to determine all of the ideals of , .K pO  Let a  be any ideal 

of ,K pO and consider the ideal factorization of Ka O in 

.KO  write it as n
Ka O p b   For some n  and some ideal 

,b  relatively prime to .p  we claim first that , , .K p K pbO O  
We now find that 
  , , ,( ) n n

K K p K p K pa a O O p bO p O      Since , .K pbO  

Thus every ideal of ,K pO  has the form ,
n

K pp O  for some ;n  

it follows immediately that ,K pO is noetherian. It is also now 

clear that ,
n

K pp O is the unique non-zero prime ideal in ,K pO
. Furthermore, the inclusion , ,/K K p K pO O pO  Since 

, ,K p KpO O p   this map is also surjection, since the 

residue class of ,/ K pO    (with KO   and p  ) is 

the image of 1   in / ,K pO  which makes sense since   is 

invertible in / .K pO  Thus the map is an isomorphism. In 
particular, it is now abundantly clear that every non-zero 
prime ideal of ,K pO is maximal.  To show that ,K pO is a 
Dedekind domain, it remains to show that it is integrally 
closed in K . So let K   be a root of a polynomial with 

coefficients in  , ;K pO  write this polynomial as  

11 0

1 0

...m mm

m

x x 
 





    With i KO   and .i K pO   

Set 0 1 1... .m      Multiplying by m  we find that   

is the root of a monic polynomial with coefficients in .KO  

Thus ;KO   since ,p   we have ,/ K pO   

. Thus  ,K pO is integrally close in .K   
 
COROLLARY 1.2.   Let K  be a number field of degree n  

and let   be in KO  then '
/ /( ) ( )K K KN O N � �   

PROOF.  We assume a bit more Galois theory than usual for 
this proof. Assume first that /K �  is Galois. Let   be an 
element of ( / ).Gal K �  It is clear that 

/( ) / ( ) ;K KO O      since ( ) ,K KO O   this shows 

that ' '
/ /( ( ) ) ( )K K K KN O N O  � � . Taking the product 

over all ( / ),Gal K  �  we have 
' '

/ / /( ( ) ) ( )n
K K K K KN N O N O � � �  Since / ( )KN �  is 

a rational integer and KO  is a free� -module of rank ,n    

// ( )K K KO N O�   Will have order / ( ) ;n
KN �  therefore 

 '
/ / /( ( ) ) ( )n

K K K K KN N O N O � � �  

This completes the proof.  In the general case, let L  be the 
Galois closure of K  and set [ : ] .L K m   

 

III. ROBUSTNESS DEFINITION OF ARTIFICIAL IMMUNE 
SYSTEM 

Up to now, the uniform definition on robustness of the 
artificial immune system has not been given. In order to 
analyze the robustness of the artificial immune system based 
on the normal model, it is necessary to define the robustness 
of the artificial immune system as such.  In general, when a 
system has a parameter uncertainty with a definite scope or is 
dynamic without modeling to a certain extent, if the system 
still maintains some properties unchanged and keeps definite 
dynamic traits, then the system have the ability, which is 
called as robustness.  
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Definition 1 After the immune system is infected by foreign 
pathogen, the system can recuperate its health with its immune 
mechanism to keep it work in a normal pattern. Such trait of 
the system is called as robustness of the as non-selfs, the 
artificial immune system on the normal model can keep the 
self percent to 100%, the non-self percent to 0, some functions 
unchanged, and assure a definite dynamic immunity, by 
detecting selfs and non-selfs, recognizing the non-selfs and 
eliminating the non-selfs. Such ability of the system is called 
as robustness of the artificial immune system.  Immune 
computation of the artificial immune system has robustness, 
and such robustness is maintained through maximizing the self 
percent and minimizing the non-self percent. Because normal 
artificial immune system has only selfs and no non-selfs, the 
goal of immune computation is to detect recognize and 
eliminate the non-selfs, and repair the selfs infected by the 
non-selfs.  
 
Definition 2 In mathematics, the maximization of the self 
percent for the artificial immune system is represented as 
such.  
lim0=→mstttt, (1)  
 
Here, represents the time variable, t represents the time point 
when the immune computation is accomplished, represents the 
sum of the selfs in the artificial immune system at the time 
point t, represents the sum of the components in the system at 
the time point . t0stmtt 
On the other hand, the minimization of the non-self percent for 
the artificial immune system is represented as such.  
 
lim0=→mntttt, (2)  
Here, represents the sum of the non-selfs at the time point t. nt 
 
Definition 3 In the artificial immune system, the set of 
robustness criterions is the condition set for maximizing the 
self percent of the system and minimizing the non-self percent 
of the system, i.e. the condition set of convergence for the 
limits in both the above formulas (1) and (2).  According to 
the above definitions, the theorem of robustness criterion for 
the artificial immune system is proposed to analyze the 
robustness of the system.  
In mathematics, the criterion that the artificial immune system 
has robustness is the condition that the self percent for the 
system increases to 100% and the non-self percent decreases 
to 0, i.e. RSS 
1lim0=→mstttt, and 0lim0=→mntttt. (3)  
[Proof] According to the statistic trait, when the artificial 
immune systems at different time points have same 
compositions of selfs and non-selfs, their self percents, their 
non-self percents and some functions for the systems are all 
same. Therefore, though some disturbance are caused by the 
non-selfs on the self percent, the non-self percent and some 
functional parameters, at the time point the self percent, the 
non-self percent and some functions of the artificial immune 
system S are same as the normal artificial immune system. At 

the time, the system maintains a definite trait of dynamic 
immunity, such as the dynamic traits of anti-virus, fault 
diagnosis and failover. According to definition 1, during the 
process of immune computation from the initial time to the 
time point , the artificial immune system has robustness. t0t0 
Thus, the problem for analyzing robustness of the artificial 
immune system can be extended into the problem for 
designing and maintaining robustness of the artificial immune 
system. The maximization of the selfs and the minimization of 
the non-selfs in the artificial immune system can be kept with 
the immune algorithms to make the artificial immune system 
robust. 

 

A. Memory Cell Identification 
The adaptive and evolutionary property of Genetic algorithms 
has been used to evolve the highly fit sister detectors activated 
when an anomaly has been encountered. The genetic operators 
– selection, cloning, crossover and mutation - have been used 
for this purpose. When an anomaly is encountered, the sister 
detectors activated as a result is called the set of “Activated 
Detectors”, which are candidates for memory cells. Then, the 
genetic operator of selection is applied to determine which of 
these detectors should be cloned. The cloning threshold is set 
by the following formula: Cloning Threshold = Sum of fitness 
of all the detectors Total number of detectors Those activated 
detectors having a fitness value greater than or equal to the 
cloning threshold undergo the cloning. The number of clones 
to be generated for the candidate detectors is determined by 
the following formula:  
 
Number of Clones = Int{Fitness of detector*10 /Total Fitness} 
 
Once the process of cloning is complete, the clones and the 
remaining activated detectors together form the set of “Winner 
Detectors”. Subjecting these Winner Detectors to the genetic 
operators of Mutation and Crossover facilitates the evolution 
of these detectors. After a substantial number of generations, 
the detector with fitness value greater than all the Winner 
Detectors is treated as a “Memory Cell”. 

 

IV. METHODOLOGY 
 

In this research, an intelligent decision support system for 
nurse rostering is proposed. The architecture of the proposed 
decision support system is shown in Fig. 1. As depicted in Fig. 
1, there are four components in this system: two roster 
databases and two subsystems for planning. The historical 
roster database record previous rosters and other related 
statistics, and the reserved roster database record the particular 
shifts that nurses have reserved. The roster planning 
subsystem is the intelligent nurse rostering mechanism. In the 
research, AIS is adopted. Once the rostering instructions are 
received, the planning subsystem will get data from the 
historical roster and reserved roster databases, then perform 
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AIS heuristic algorithm to plan the roster and evaluate the 
quality of the roster. When the given “stop” criterion is 
satisfied, this subsystem will output the planned roster and 
corresponding evaluation data to the decision support 
subsystem. The decision support subsystem provides a roster 
adjustment tool for the user. It will provide information such 
as the number of constraint violations to assist the users to 
modify the roster easily. Besides, through this subsystem, 
users can save a roster that they accept at the historical roaster 
database or the shifts that particular nurses want to reserve at 
the reserved roster database. The core technology of this 
system is AIS, which is inspired by theoretical immunology, 
as well as observed immune functions, principles and 
mechanisms in order to solve problems in [2, 9]. The AIS 
makes use of designing a shape-space to represent the 
application domain, then defining an affinity measuring 
mechanism to evaluate the interactions among these elements, 
and then using the immune algorithms to find the 
approximation of its optimum solution. There are a lot of 
immune algorithms in AIS, each of which is suitable for 
certain domains. In this research, we choose the CLONALG 
and aiNet, which were proposed by de Castro, and they are 
suitable to perform tasks such as machine learning, pattern 
recognition, and optimization. 
 
The algorithm works as follows [4]: 
1. Generate a set of N candidate solutions randomly; 
2. Select n highest affinity solutions according to affinity 
measures function; 
3. Clone these n selected solutions, the number of copies is 
proportional to their affinities; 
4. Mutate these n selected solutions with a rate inversely 
proportional to their affinities; 
5. Re-select m highest affinity mutated solutions to compose 
the new repertoire; 
6. Replace some low affinity solutions by new ones; 
7. Determine the similarity between each pair of solutions; 
8. Eliminate all solutions whose affinity is less than a pre-
specified threshold; 
9. Save the best solution which has highest affinity so far; 
10. Repeat step 2 to 9 until a given stopping criterion is met. 

 
A normal model is built with the space-time properties of each 
component in the system to identify the normal state of the 
artificial immune system uniquely. With the normal model, 
the artificial immune system has many advantages in detecting 
the selfs and the non-selfs, eliminating the unknown non-selfs, 
and repairing the damaged system. 

 

A. Normal Model of System with Space-Time Properties 
In the four-dimension space that Einstein used to describe his 
relativity theory, the state of everything is identified by the 
space-time coordinates uniquely [9]. Inspired by the mapping 
relation, every component (B-cell, T-cell, or antibody etc.) in 
biological immune system is assumed to have unique 

spacetime properties, which are sure useful for uniquely 
identifying the normal state of the biological immune system. 
The space property is the DNA pattern of the component and 
the time property is the time state of the component. The 
capacity of bacterial DNA (CpG-DNA) for inducing APCs to 
differentiate into professional APCs is an interesting discovery 
[10]. The DNA pattern and the time state are useful for 
identifying the normal state of the immune system. Inspired by 
the biological immune system, the file-based object system, 
which the artificial immune system protects, consists of some 
files and directories, and the space property (the absolute 
pathname) and time property (the last revision time) uniquely 
identify each component in the system. Suppose a component 
of the object system S, which the artificial immune system 
protects, is represented as ci, the space property of the 
component ci is its absolute pathname pi, and the time 
property of the component ci is its last revision time ti, thus 
the space property is a space coordinate and the time property 
is a time coordinate. With the mapping relation from the 
physical space of the real world to the cyberspace on 
computers, the combined vector of the space coordinate and 
the time coordinate for each component is unique, and the 
vector of space-time properties is used to represent the state of 
the component. If and only if the states of all components of 
the system S are normal, the state of the system is normal [11].  
 
Theorem 1 Suppose the time property is correct in the 
cyberspace, all files of the object system S are normal, the 
function N(.) represents the normal function (if the parameter 
is normal, then the function s(.) represents the state of the 
object that the parameter denotes and the return of the function 
is 1; if the parameter is abnormal, then the return of the 
function is 0), then the set for the vectors of space-time 
properties for all the files {(pi, ti)|N(s(ci))=1, i=1, 2, …, n} 
uniquely identifies the normal state s(S) (N(s(S))=1) of the 
system S [12]. With the normal model of the object system S, 
all the selfs become known and the process for detecting the 
selfs is much easier than that for detecting the non-selfs. 

 

B. Unknown non-self Detection of AIS with Normal Model 
For human beings, detection of an unknown object is not easy 
and sometimes causes cognitive errors, but if the selfs are 
known, discrimination of the unknown object from the selfs 
becomes easier. Due to known complexity of the non-selfs, the 
feature set of the non-selfs is unlimited in theory and is not 
enough for the criterions for detecting unknown non-selfs. 
However, many non-self detecting techniques such as virus 
detecting, abnormity detecting and fault detecting are based on 
matching the features of the non-selfs, and the probability for 
detecting the non-self is quite limited. In fact, any unknown 
non-selfs such as viruses and faults may cause fatal lost in the 
application system, so that many problems such as anti-virus 
security, fault diagnosis and robust control, push the non-self 
detecting techniques to improve thoughts & methods. The core 
problem is how to identify the normal object system uniquely 
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in cyberspace, and in the real world the space-time coordinates 
uniquely identify the object that may be a system. For 
designers and users, many computer systems are more 
knowable and easier to control than the non-selfs, so that the 
selfs for the computer system should be used to the utmost. In 
nature, designers should know whether the system is normal 
or abnormal, and the advantage of the normal model is to 
identify the normal state of the object system with the 
spacetime properties of the selfs. With the file-based object 
system protected by the AIS, the algorithm for building the 
normal model is designed. 
 
Step 1. Backup the system and initialize the set of selfs. 
Step 2. Read from the root of the system to find files. 
Step 3. If there is at least an unread file or directory in the 
current directory, then read the pathname and last revision 
time of the current file or directory; otherwise go to step 6. 
Step 4. Add the space-time properties of the file or directory 
into the set of selfs. 
Step 5. For sub-directory, build the normal model of the sub-
system at the sub-directory recursively. 
Step 6. If all the files and directories of the system are 
processed, then end the algorithm; otherwise go to step 3. 
 
The time complexity of the algorithm for building the normal 
model is O(n+m). Here, n represents the sum of files in the 
normal system, and m represents the sum of directories in the 
normal system. With the normal model, the algorithm for 
detecting the selfs and the non-selfs is designed as such. 
 
Step 1. Read from the root of the system to find files. 
Step 2. If there is at least an unread file or directory in the 
current directory, then read the pathname and last revision 
time of the current file or directory; otherwise go to step 6. 
Step 3. Query in the self database with the space-time 
properties of the file or directory. 
Step 4. If a record is matched, then the file or directory is a 
self; otherwise the file or directory is a non-self, and the 
nonself is recognized by the algorithms for recognizing the 
nonselfs. 
Step 5. For sub-directory, detect each component of the sub-
system at the sub-directory recursively. 
Step 6. If all the files and directories of the system are 
processed, then end the algorithm; otherwise go to step 2. The 
time complexity of the algorithm for building the normal 
model is O((k+l)(m+n)). Here, k represents the sum of files in 
the current system, and l represents the sum of directories in 
the current system. 
 
 
Theorem 2 On the condition that the time property is correct in 
the cyberspace, detecting the selfs and the non-selfs with the 
normal model of the object system, the probability for 
detecting the selfs is 1 and the probability for detecting the 
non-selfs is also 1 [12]. The time property depends on the 
timing mechanism of the operation systems, and should be the 

same with the time meaning in the real world. For an anti-
worm system, the probability for detecting the non-selfs is 
shown in Fig. 1. In Fig. 1, the artificial immune system is 
normal before the worms attack the system, so that the normal 
model is very useful for detecting all the non-selfs. 
Afterwards, some worms infect the artificial immune system 
and damage the storage of the normal model afterwards. The 
normal model is not good enough to detect all the non-selfs 
and the artificial immune system begins to repair itself. After 
repairing, the artificial immune system starts to detect all the 
non-selfs with the normal model and eliminate all the non-self 
in the end. According to the comparison between the two 
approaches for detecting the non-selfs, the normal model is 
very necessary and important for detecting the non-selfs, even 
though the normal model is not enough for detecting all the 
non-selfs when the artificial immune system itself is damaged. 
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