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Abstract— Service-oriented Architectures (SOA) facilitate the 
dynamic and seamless integration of services offered by different 
service providers which in addition can be located in different 
trust domains. Especially for business integration scenarios, 
Federated Identity Management emerged as a possibility to 
propagate identity information as security assertions across 
company borders in order to secure the interaction between 
different services. Although this approach guarantees scalability 
regarding the integration of identity-based services, it exposes a 
service provider to new security risks. These security risks result 
from the complex trust relationships within a federation. In a 
federation the authentication of a user is not necessarily 
performed within the service provider’s domain, but can be 
performed in the user’s local domain. Consequently, the service 
provider has to rely on authentication results received from a 
federation partner to enforce access control. This implies that the 
quality of the authentication process is out of control by the 
service provider and therefore becomes a factor which needs to 
be considered in the access control step. In order to guarantee a 
designated level of security, the quality of the authentication 
process should be part of the access control decision. To ease this 
process, we propose in this paper a method to rate authentication 
information by a level of trust which describes the strength of an 
authentication method. Additionally, in order to support the 
concept of a two-factor authentication, we also present a 
mathematical model to calculate the trust level when combining 
two authentication methods. Quantitative Trust Management 
(QTM) provides a dynamic interpretation of authorization 
policies for access control decisions based on upon evolving 
reputations of the entities involved. QuanTM, a QTM system, 
selectively combines elements from trust management and 
reputation management to create a novel method for policy 
evaluation. Trust management, while effective in managing 
access with delegated credentials (as in PolicyMaker and 
KeyNote), needs greater flexibility in handling situations of 
partial trust. Reputation management provides a means to 
quantify trust, but lacks delegation and policy enforcement. This 
paper reports on QuanTM’s design decisions and novel policy 
evaluation procedure. A representation of quantified trust 
relationships, the trust dependency graph, and a sample 
QuanTM application specific to the KeyNote trust management 
language, are also proposed. 
 
Keywords- Trust management, Trust levels, Authentication and 
Access Control, Web Service Federation, Federated Identity 
Management 

I. INTRODUCTION  
Creating software which is flexible and highly customizable to 
adapt to fast changing business needs has moved into the main 

focus of software developers. Enterprises demand a seamless 
communication between applications independent from the 
platform on which they run and even across domain 
boundaries. Service-oriented Architectures and XML Web 
Services have been designed to meet these concerns, allowing 
a flexible integration of services provided by independent 
business partners. However, the seamless and straightforward 
integration of cross-organisational services conflicts with the 
need to secure and control access to these services. The 
traditional approach to restrict service access is based on user 
authentication performed by the service provider itself, cf. 
[18]. Since credentials (e.g. user name and password) needed 
to access a service are issued and managed by the service 
provider, this approach is referred to as isolated identity 
management as stated in [13]. It requires service users to 
register a digital identity at each involved service provider and 
to authenticate separately for each service access. Federated 
Identity Management as a new identity model provides 
solutions for these problems by enabling the propagation of 
identity information to services located in different trust 
domains. It enables service users to access all services in a 
federation using the same identification data. Several 
frameworks and standards for Federated Identity Management 
have been specified (e.g. WS-Federation [1] and Liberty 
Identity Web Services Framework (ID-WSF) 2.0 [31]). The 
key concept in a federation is the establishment of trust 
whereby all parties in a federation are willing to rely on 
asserted claims about a digital identity such as SAML 
assertions [24]. As Service-oriented Architectures move from 
an isolated identity management scheme to a federated 
identity management, service providers are exposed to new 
risks. In a federation the authentication of a user is not 
necessarily performed within the service provider’s domain, 
but can be done within the user’s local domain. Consequently, 
the service provider has to trust the authentication performed 
by the user’s identity provider. In terms of security this is a 
critical situation since authorization and access control of the 
service are highly dependent on the authentication results. A 
weak authentication jeopardises the dependent service’s 
security by increasing the risk that a user can personate as 
someone else and gain improper access. OASIS considers this 
as a serious risk [23] and recommends to agree on a common 
trust level in terms of policies, procedures and responsibilities 
to ensure that a relying party can trust the processes and 
methods used by the identity provider. Jøsang et. al. [13] 
describe the usage of such a common trust level as a 
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symmetric trust relationship, since all parties are exposed to an 
equal risk in the case of failure. As opposed to this, having 
different trust requirements and mechanisms is referred to as 
an asymmetric trust relationship. They argue that asymmetric 
trust relationships are hard to establish, since the parties are 
exposed to different risks in the case of failure. However, with 
regard to complex SOA – that might be based on the dynamic 
selection of services and service providers – defining and 
enforcing a common trust level is disadvantageous: A 
symmetric trust relationship between the providers in a 
federation would require a trust level, which is sufficient for 
the service with the strongest authentication requirements. 
These requirements, however, might not be necessary for all 
services within the federation and might change if this service 
is dynamically replaced. Consequently, users are forced to 
authenticate by a predefined strong authentication method, 
even though weak authentication would be sufficient for the 
service they want to access. Likewise, when users are fixed to 
a predefined authentication method according to the specified 
trust level, access will be denied even though the user might 
be able to verify his identity in an even more trusted way. 
Altogether, there is a growing demand for more flexibility in 
authentication processes in SOA. To achieve this flexibility, a 
way to rate the trust relationship between identity provider and 
service provider is needed in order to restrict the service 
access based on an individual trust level. The general idea of 
classifying authentication methods according to their level of 
trustworthiness is not new. Especially in the field of e-
Government, various countries have launched e-authentication 
initiatives in order to secure access to critical e-Government 
services [26, 11, 17, 5]. All of these initiatives have in 
common that they define authentication trust levels – mostly 
four different levels – in a way that covers the main use cases, 
reaching from “no security needed” to “critical application”. 
For each level, requirements for the authentication process are 
defined. This means, authentication methods are always 
assigned to predefined levels, but not the other way around. 
To provide authentication in a truly flexible manner, we 
present in this paper: 
 
• A formal definition of trust levels to quantify the trust that is 
established by using a particular authentication method. This 
definition is globally applicable and not restricted to a specific 
use case setting requiring specific bootstrapping algorithms. 
This way, the meaning of a trust level based on our approach 
is clear and can be applied to any use case without the need to 
know any further set up or environment parameters. 
• A mathematical model to combine different authentication 
methods as used in a two-factor authentication and to calculate 
their combined authentication trust level. 
• An example calculation that demonstrates the applicability of 
our mathematical model to existing authentication methods. 
 
The emergence of distributed topologies and networked 
services has resulted in applications that are stored, 
maintained, and accessed remotely via a client/server model. 

The advantages of such a setup are many, but the challenges 
of access control and identity management must be addressed. 
Trust management and reputation management are two 
differing approaches to the problem. While effective with 
regard to explicit declarations, trust management lacks 
applicability when relationships are characterized by 
uncertainty. Thus, trust management is useful in enforcing 
existing trust relationships but ineffective in the formation of 
partially trusted ones. Reputation management provides a 
means of quantifying trust relationships dynamically, but lacks 
access enforcement and delegation mechanisms. To address 
this divide we introduce the notion of Quantitative Trust 
Management (QTM), an approach that merges concepts from 
trust and reputation management. It (QTM) creates a method 
for specifying both policy and reputation for dynamic decision 
making in access control settings. A system built upon QTM 
can not only enforce delegated authorizations but also adapt its 
policy as partial information becomes more complete. The 
output is a quantitative trust value that expresses how much a 
policy-based decision should be trusted given the reputations 
of the entities involved. Further, to make this novel concept 
concrete, we propose QuanTM, an architecture for supporting 
QTM. In this application of QuanTM, we use the KeyNote [8, 
7] (KN) trust management language and specification, due to 
its well defined delegation logic and compliance system. 
Summarily, a KN evaluator checks a user’s access credentials 
against local policy to produce a compliance value from a 
finite and predefined set of values. The compliance value is 
then used to make access decisions. KN allows principals to 
delegate access rights to other principals without affecting the 
resulting compliance value. Further, KN is monotonic: If a 
given request evaluates to some compliance value, adding 
more credentials or delegations will not lower that value. We 
argue that credentials should not be explicitly trusted, nor 
should the trustworthiness of delegating principals be ignored. 
Furthermore, the result of evaluation for a given access 
request may need to be dynamic [9]. Service providers may 
find it desirable to arrive at different opinions based on local 
constraints, policies, and principals for the same request. In 
QuanTM, this is easily expressed. We address these issues in 
the following two ways: (1) It includes a means to 
dynamically assign reputation to principals and their 
relationships within a request, and (2) It provides a mechanism 
for combining this information to produce a trust value. In 
QuanTM, a trust value (often a real number) is used to 
represent the the trustworthiness of a given compliance value 
and how it was reached. Our proposed QuanTM architecture 
(see Fig. 1) consists of three sub-systems: 
 
1. Trust management consists of a trust language evaluator 
that verifies requests meet policy constraints, and a trust 
dependency graph (TDG) extractor that constructs a graph 
representing trust relationships. 
2. Reputation management consists of two modules. First, a 
reputation algorithm to dynamically produce reputation values 
by combining feedback. These reputation values weigh TDG 
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edges. Second, a reputation quantifier computes the trust value 
for a given request by evaluating the weighted TDG. 
3. Decision management is composed of a decision maker that 
arrives at an access determination based on a trust 
value, context, and an application specific meta-policy that 
encodes a cost-benefit analysis. The design of QuanTM has 
been guided by the requirement that the individual 
components will be application specific, and thus, we have 
designed QuanTM modularly. QuanTM provides a simple 
interface by which different trust management languages, 
reputation algorithms, and decision procedures may be 
included. In this paper, we propose a QuanTM design instance 
that utilizes the KeyNote language and TNA-SL [11, 12] 
reputation algorithm. This instance’s implementation and 
evaluation is the subject of future work. 

A. Background  
Several approaches to define levels of trustworthiness for 
authentication mechanisms have been proposed in recent years 
indicating the importance of such a concept. In the area of e-
Government, the UK Office of the e-Envoy has published a 
document called “Registration and Authentication – e-
Government Strategy Framework Policy and Guideline” [26]. 
In this document the initial registration process of a person 
with the system as well as the authentication process for a 
user’s engagement in an e-Government transaction are 
defined. Depending on the severity of consequences that might 
arise from unauthorized access, four authentication trust levels 
are defined, reaching from Level 0 for minimal damage up to 
Level 3 for substantial damage. The IDABC [11] 
(Interoperable Delivery of European eGovernment Services to 
public Administrations, Businesses and Citizens) is a similar 
project managed by the European Commission. It publishes 
recommendations and develops common solutions in order to 
improve the electronic communication within the public 
sector. Its Authentication Policy Document [7] defines four 
assurance levels as well, which are also associated with the 
potential damage that could be caused. For each of the four 
levels the document defines the requirements for the 
registration phase and for the electronic authentication. The e-
Authentication Initiative is a major project of the e-
Government program of the US. The core concept is a 
federated architecture with multiple e-Government 
applications and credential providers. The intention is that the 
e-Authentication Initiative provides an architecture which 
delivers a uniform, government-wide approach for 
authentication while leaving the choice of concrete 
authentication technologies with the individual government 
agencies. In this context, the initiative has published a policy 
called “EAuthentication Guidance for Federal Agencies” [5] 
to assist agencies in determing the appropriate level of identity 
assurance for electronic transactions. The document defines 
four assurance levels, which are based on the risks associated 
with an authentication error. Which technical requirements 
apply for each assurance level is described in a 

recommendation of the National Institute of Standards and 
Technology (NIST), which is called 
 

II. SECURE FRAMEWORK  
 

The SECURE1 project is working towards a trust-based 
generic decision-making framework for use in Global 
Computing. One of the target application-areas is Trust-Based 
Access Control (TBAC), extending our existing work on role-
based access control to give the authorisation manager grained 
control over who they trust. In SECURE, the access control 
manager grants or denies permission for principals to execute 
actions. A decision is a parameterised boolean value . the 
parameters allow the AC manager to indicate its reasons for 
denying a request or constrain a positive decision. For every 
decision the SECURE framework considers the trust it has in 
the requesting principal p and the risk of granting the request. 
In our previous work [8], we observed that risk is the 
combination of the costs and likelihoods of all the possible 
outcomes and we described a model for combining trust and 
cost information to give a risk metric. The problem with this 
approach is that the risk metrics were insufficiently expressive 
to capture all the subtleties conveyed by the trust value. 
Information is lost since decisions can only be made based on 
simplistic metrics such as expected benefit and standard 
deviation. In this new model, we still use an outcome based 
approach, but allow the policy author to reason about and 
compare the raw trust and cost information on a per-outcome 
basis, thereby giving them full-control over the level of 
uncertainty they wish to permit. 

A. The Secure Trust Model  
A request by principal p to perform an action is submitted to 
the access control manager. The principal may also supply a 
list of credentials which may include signed trust-assertions 
(recommendations) from other principals, and/or a list of 
referees whom the trust calculator may wish to contact for 
recommendations. The AC manager looks up the relevant 
contexts for the requested action, and queries the trust 
calculator for a trust-value, Tv about p. The notion of context is 
important in the SECURE trust model. We observe that trust is 
a multi-dimensional quantity . by analogy, a person who is 
trusted to drive a car may not be trusted to y a plane. However, 
in the absence of directly relevant information, we may infer a 
trust-value in one dimension from trust-information in related 
dimensions, so it may be possible to infer some information 
about a server's trustworthiness to relay e-mail (and not spam) 
from how much they are trusted to serve webpages. We call 
these different dimensions, trust-contexts. Trust in a principal 
is computed by examining evidence relevant to the current 
context. Evidence consists of observations of previous 
interactions we have had with this principal and 
recommendations from other principals, suitably discounted 
depending on our trust in them [12]. The output of the trust 
calculator is Tv, a list of .t; c/ pairs, where t is the trust-value 
assigned to p for trust-context c. The domain of a trust-value ti 
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in trust-context ci is the lattice Tc over which there are two 
orderings denied, trust (indicating increasing/decreasing 
trustworthiness) and information (how much evidence was 
used to calculate the trust-value) [7]. For each possible action, 
the policy author specifies which trust-contexts are relevant 
and the trust calculator forms a projection of the relevant 
contexts from all the trust-information known about p. Since 
principals may be identied by any suitable mechanism, for 
example, public-keys, biometrics, passwords or similar, and 
some mechanisms are more capable and/or secure than others, 
Tv also includes tid, our trust in the mechanism used to 
authenticate or recognize p [15]. 
 

B. Making Trust based decisions 
Intuitively, a high-risk action requires greater trust in its 
participants and the lower the risk, the less worthwhile it is 
expending resources in establishing a high level of trust. The 
majority of computational trust systems, such as [1] and [2], 
concentrate on aspects relating to assigning a trust-value to a 
principal; they do not consider policy-driven decision-making 
using trust. [18] and [19] make use of thresholding in their 
policy languages . the former checks that the trust-value is 
greater than a scalar, while in the latter there must be at least a 
certain number of evidence statements of at least a predefined 
level of reliability. However, all of these thresholds are 
statically determined by the policy author and there is no run-
time evaluation of risk. In SECURE, an explicit cost-benefit 
analysis is used to determine how much trust is required to 
offset the risk. While the trust framework is calculating a trust-
value for p, the AC manager looks up the outcome costs for 
the action and checks any specified environmental constraints 
(for example, time of day), then evaluates a series of 
predicates which compare trust-values to costs. 
 

 

III. AUTHENTICATION TRUST LEVEL  
To overcome the limitations revealed, we want to give a 
definition for a numerical representation of an authentication 
trust level with a clear semantical meaning. Having a clear 
semantical meaning of a trust level, such a model is applicable 
to all current and upcoming authentication mechanisms and 
can therefore serve as a base for further research in this area. 
In the following we introduce our notion of an authentication 
trust level. An authentication trust level refers to the trust or 
confidence that a service provider has into a single 
authentication method or the combination of different 
authentication methods. It reflects the strength of the 
authentication and how easy it is for an attacker to fool the 
authentication process: The stronger the authentication, the 
higher the confidence that a user corresponds with the claimed 
set of attributes. However, the strength of an authentication 
method depends on many criteria and these criteria differ 
tremendously between different categories of user 
authentication. While biometric authentication methods are 

mostly characterized by criteria like the false acceptance rate 
(FAR) and false rejection rate (FRR), the security of 
knowledge based authentication methods as e.g. passwords 
depends on criteria like the theoretical or effective password 
space as well as whether passwords were auto-generated or 
chosen by humans. Our idea is to use a criterion which is 
common to all authentication methods. As this criterion, we 
propose to use the probability that an attacker can crack the 
authentication method and personate as the right user. Based 
on this idea, we define an authentication trust level in the 
following way: 
 
Definition 1.0. Let A be the event that the authentication 
method A˜ is cracked by an attacker. P is the corresponding 
probability distribution. We define an authentication trust 
level as: 
 
Given Definition, we can derive directly some characteristic 
values: 
• An authentication trust level of zero represents no trust at all. 
• An authentication trust level of one means that this 
authentication method fails in 10 percent of all authentication 
attempts. 
• An authentication trust level of two means that this 
authentication method fails in 1 percent of all authentication 
attempts. 
 
Therefore, increasing the authentication trust level by one 
means that this authentication method is ten times more 
secure. If an authentication method is twice as secure as a 
method ˜B ,its authentication trust level is increased by 
approximately 0.3 or rather log(2). We summarize this relation 
in the following definition. 
 

IV. SMART AUTHENTICATION TRUST LEVEL NETWORK 
ARCHITECTURE 

 

A. Authentication Trust Level Determination 
Based on the definition of an authentication trust level, the 
critical point of determining the authentication trust level for 
an authentication method. Since this topic is complex enough 
and only provide some basic principles and methods for the 
process of defining the authentication trust level. However, it 
should have become clear that with our notion of an 
authentication trust level everybody is able to provide 
adequate algorithms to map any authentication method to such 
a trust level. Due to the clear semantical meaning even 
somebody who was not involved in the determination process 
is able to assess the result. As said before, an authentication 
method is characterized by many different criteria, which are 
mapped into one authentication trust level, which represents 
the probability that the authentication process can be cracked. 
This probability is the result of many influencing variables. 
Since it is impossible to take all criteria into account, it is 
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important to identity those criteria which have the highest 
impact on the probability value and to omit those values which 
only have little or no impact at all. This is a challenging task, 
which has to be done by experts and those results should be 
reviewed several times. As a starting point several existing 
and upcoming approaches for a common language to describe 
the authentication process can be used. The OASIS’ 
Authentication Context Classes [25], which are part of the 
SAML 2 specification, for example, already provide an XML 
schema to describe the authentication process related to a 
specific authentication method. Also, the European Network 
and Information Security Agency (ENISA) aims on 
developing a common description language for authentication 
methods [6]. These approaches are a good reference since they 
comprise the opinions and experiences of many people about 
which parameters are relevant when describing an 
authentication method. Finally, the most important step to 
arrive at an authentication trust level is to determine the 
probability that the considered method is cracked. In classical 
probability theory, two approaches are used to identify 
probabilities: Either the theoretical probability is calculated or 
probabilities are determined empirically based on 
observations. Whenever possible, the first approach should be 
used, since it provides more exact results. However, there are 
certain preconditions: 
 
One has to be able to define all the possible outcomes and all 
possible events must be equally likely. In most cases, the 
world is not that easy and the only way is to determine the 
probabilities empirically. Therefore experiments with a large 
number of iterations and a large number of test data are 
necessary, which are rarely available. However, the more an 
authentication method is established, the more benchmarks 
and test results already exist. This is, for example, the case for 
fingerprint-based authentication systems. In order to compare 
and evaluate the security of fingerprint readers of different 
vendors, the Fingerprint Vendor Technology Evaluation [20] 
has been conducted by the National Institute of Standards & 
Technology (NIST) [21] in the US in 2003. Eighteen different 
companies competed in the test and 34 systems were 
evaluated. Of course, not for all authentication methods the 
evaluation of their security is as advanced as for the 
fingerprint authentication. However, by time such statistics 
will exist, since no one will use a method without an 
evaluation of its security and without knowing about the risks. 
Several publications also evaluate the security of fingerprint 
systems and biometric authentication in general as for 
example [27, 8, 4]. Similar studies on the security of smart-
cards, palmprint readers and many others are also available 
(cf. e.g. [14, 16, 15, 29]). Even though empirical methods will 
be the more frequent case, there are - especially in the field of 
knowledge-based authentication methods - parameters which 
are qualified to be determined theoretically. One of these 
criteria is the theoretical password space, since the number of 
all possible passwords is easy to calculate. Given for example 
the number of possible passwords and the number of false 

attempts, the probability that the password is cracked by a 
brute-force attack can be calculated using classical probability 
theory. However, while in general the theoretical password 
space is quite large, the space actually used is often much 
smaller making brute force attacks easier. Many passwords 
can be guessed by doing a little research on the user or trying 
standard password lists. How hard it is to guess a password is 
described by a measure called entropy. While the theoretical 
password space can be computed easily, it is often hard to 
estimate the entropy of user-chosen passwords, since it is 
based upon the actual used password space. To evaluate the 
user’s influence on the strength of a password, several studies 
have been conducted [33, 19, 9, 12]. All together, determining 
the authentication trust level of an authentication method is a 
challenging and critical task, which has to be done by experts 
and those results should be reviewed several times. 

B. Authentication Trust Level Combination 
Multi-factor authentication is an important concept, which is 
frequently used nowadays to increase the reliability of a user’s 
authentication. The advantage is that the risk of the 
authentication process to fail is split up onto several 
authentication methods, whereas each of the methods is quite 
different in its kind of effectiveness. Hence, even if one factor 
fails, access is still denied as long as at least one of the other 
factors is not cracked by an attacker. In which way adding a 
further authentication factor contributes to the overall security 
of the authentication process is a question which is not easy to 
answer. If two authentication methods belong to the same 
category, the mechanisms to crack the authentication are quite 
similar, which makes it easier for an attacker to crack both 
authentication methods. In this case, adding a second method 
will not increase the overall security of the authentication as 
much as in the case of the multi-factor authentication. 
Therefore, we have to take the similarity between two 
methods into account when assessing the effect of their 
combination. Based on the authentication trust level of an 
authentication method, propose a way to calculate the 
combined authentication trust level of two authentication 
methods. A mathematical model is developed which allows 

C. Joint Probability Function 
Definition 1.1 The authentication trust level of an 
authentication method is based on the probability that this 
method is cracked by an attacker. This means, when combining 
two methods, we are looking for the probability that both 
authentication methods have failed, namely the probability of 
the joint event. According to probability theory, we can 
calculate the joint probability of two events. The combined 
authentication trust level is defined by equation While P(A) in 
equation is the known probability that the mechanism A˜ is 
cracked, the only thing we know from P(B | A) is that it is a 
function in dependency of P(A) and P(B). Therefore, in order 
to calculate the combined authentication trust level, we need to 
define this function. As the first step we consider the bounds in 
which the joint probability function is defined. 
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We consider the following Trust level field equations defined 
over an open bounded piece of network and /or feature space 

dR . They describe the dynamics of the mean anycast of 
each of p node populations. 
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We give an interpretation of the various parameters and 
functions that appear in (1),  is finite piece of nodes and/or 
feature space and is represented as an open bounded set of 

dR . The vector r  and r  represent points in   . The 
function : (0,1)S R   is the normalized sigmoid function: 

  
1( ) (2)

1 zS z
e


  

It describes the relation between the input rate iv  of 
population i  as a function of the packets potential, for 
example, [ ( )].i i i i iV v S V h    We note V  the p   

dimensional vector 1( ,..., ).pV V The p  function 

, 1,..., ,i i p   represent the initial conditions, see below. We 

note   the  p   dimensional vector 1( ,..., ).p   The p  

function , 1,..., ,ext
iI i p  represent external factors from 

other network areas. We note extI  the p   dimensional 

vector 1( ,..., ).ext ext
pI I The p p  matrix of functions 

, 1,...,{ }ij i j pJ J   represents the connectivity between 

populations i  and ,j  see below. The p  real values 

, 1,..., ,ih i p  determine the threshold of activity for each 
population, that is, the value of the nodes potential 
corresponding to 50% of the maximal activity. The p real 

positive values , 1,..., ,i i p   determine the slopes of the 
sigmoids at the origin. Finally the p real positive values 

, 1,..., ,il i p   determine the speed at which each anycast 
node potential decreases exponentially toward its real value. 
We also introduce the function : ,p pS R R  defined by 

1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     and the 

diagonal p p  matrix 0 1( ,..., ).pL diag l l Is the intrinsic 
dynamics of the population given by the linear response of 

data transfer. ( )i
d l
dt

  is replaced by 2( )i
d l
dt

  to use the 

alpha function response. We use ( )i
d l
dt

  for simplicity 

although our analysis applies to more general intrinsic 
dynamics. For the sake, of generality, the propagation delays 
are not assumed to be identical for all populations, hence they 

are described by a matrix ( , )r r  whose element ( , )ij r r is 

the propagation delay between population j  at r  and 
population i  at .r  The reason for this assumption is that it is 
still unclear from authentication level if propagation delays are 
independent of the populations. We assume for technical 

reasons that   is continuous, that is 
20 ( , ).p pC R 

   
Moreover packet data indicate that   is not a symmetric 

function i.e., ( , ) ( , ),ij ijr r r r   thus no assumption is 
made about this symmetry unless otherwise stated. In order to 
compute the righthand side of (1), we need to know the node 
potential factor V  on interval [ ,0].T  The value of T  is 
obtained by considering the maximal delay: 

 ,, ( , )
max ( , ) (3)m i ji j r r

r r 


   

Hence we choose mT   
 

D. Mathematical Framework 
A convenient functional setting for the authentication and 
authorization field equations is to use the space 

2 ( , )pF L R   which is a Hilbert space endowed with the 
usual inner product: 

 
1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr




   

To give a meaning to (1), we defined the history space 
0 ([ ,0], )mC C F   with [ ,0]sup ( ) ,

mt t F    
which is the Banach phase space associated with equation (3). 
Using the notation ( ) ( ), [ ,0],t mV V t        we 
write (1) as  

.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext
tV t L V t L S V I t

V C

    
 

  

Where  

 
1 : ,

(., ) ( , (., ))

L C F

J r r r d r  



   

  

Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the papers on this 

subject assume   infinite, hence requiring .m      
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Proposition 1.0  If the following assumptions are satisfied. 

1. 2 2( , ),p pJ L R     

2. The external current 0 ( , ),extI C R F   

3. 2
0 2( , ),sup .p p

mC R  
 

     

Then for any ,C  there exists a unique solution 
1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  finite-time 
explosion is impossible for this delayed differential equation. 
Nevertheless, a particular solution could grow indefinitely, we 
now prove that this cannot happen. 
 

E. Boundedness of Solutions 
A valid model of neural networks should only feature bounded 
packet node potentials.  
 
Theorem 1.0 All the trajectories are ultimately bounded by 

the same constant R  if max ( ) .ext
t R F

I I t
     

Proof :Let us defined :f R C R   as 
2

0 1
1( , ) (0) ( ) ( ), ( )
2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt
       

We note 1,...min i p il l   
 

2( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t       

Thus,  if 

 
2.

( ) 2 , ( , ) 0
2

def def
F

tF

p J I lRV t R f t V
l


 

       

 
Let us show that the open route of F  of center 0 and radius 

, ,RR B  is stable under the dynamics of equation. We know 

that ( )V t  is defined for all 0t s  and that 0f   on ,RB  

the boundary of RB . We consider three cases for the initial 

condition 0.V If 0 C
V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose that ,T R  

then ( )V T  is defined and belongs to ,RB  the closure of 

,RB  because  RB is closed, in effect to ,RB  we also have 

2 | ( , ) 0t T TF

d V f T V
dt

      because ( ) .RV T B  

Thus we deduce that for 0   and small enough, 

( ) RV T B   which contradicts the definition of T. Thus 

T R  and RB is stable.  Because f<0 on , (0)R RB V B   

implies that 0, ( ) Rt V t B   . Finally we consider the case 

(0) RV CB . Suppose that   0, ( ) ,Rt V t B    then 

20, 2 ,
F

dt V
dt

     thus ( )
F

V t  is monotonically 

decreasing and reaches the value of R in finite time when 
( )V t  reaches .RB  This contradicts our assumption.  Thus  

0 | ( ) .RT V T B     
 

Proposition 1.1 : Let s  and t   be measured simple functions 

on .X  for ,E M  define 
 

( ) (1)
E

E s d     
Then   is a measure on M .  

( ) (2)
X X X

s t d s d td         
Proof : If s  and if 1 2, ,...E E  are disjoint members of M
whose union is ,E  the countable additivity of   shows that  

1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

n n

i i i i r
i i r

n

i i r r
r i r

E A E A E

A E E

    

  



  

 

  

   

  

  

 
  

Also, ( ) 0,    so that   is not identically . 
Next, let  s  be as before, let 1,..., m   be the distinct values 

of  t,and let { : ( ) }j jB x t x    If ,ij i jE A B   the

( ) ( ) ( )
ij

i j ijE
s t d E        

and ( ) ( )
ij ij

i ij j ijE E
sd td E E           Thus (2) 

holds with ijE  in place of X . Since  X is the disjoint union 

of the sets (1 ,1 ),ijE i n j m     the first half of our 
proposition implies that (2) holds. 
 
 
Theorem 1.1: If K  is a compact set in the plane whose 
complement is connected, if f  is a continuous complex 
function on K  which is holomorphic in the interior of , and if 

0,   then there exists a polynomial P  such that 

( ) ( )f z P z    for all z K .  If the interior of K is 
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empty, then part of the hypothesis is vacuously satisfied, and 
the conclusion holds for every ( )f C K . Note that  K need 
to be connected. 
Proof: By Tietze’s theorem, f  can be extended to a 
continuous function in the plane, with compact support. We 
fix one such extension and denote it again by f . For any 

0,   let ( )   be the supremum of the numbers 

2 1( ) ( )f z f z  Where 1z  and 2z  are subject to the 

condition 2 1z z   . Since f  is uniformly continous, we 

have 
0

lim ( ) 0 (1)


 


  From now on,   will be 

fixed. We shall prove that there is a polynomial P  such that  
  
 ( ) ( ) 10,000 ( ) ( ) (2)f z P z z K      
By (1),   this proves the theorem. Our first objective is the 
construction of a function ' 2( ),cC R  such that for all z   

( ) ( ) ( ), (3)
2 ( )( )( ) , (4)

f z z

z

 

 


 

 
  

And 
1 ( )( )( ) ( ), (5)

X

z d d i
z
     

 


   
   

Where X  is the set of all points in the support of   whose 
distance from the complement of K  does not  . (Thus  X
contains no point which is “far within” K .) We construct 
as the convolution of f  with a smoothing function A. Put 

( ) 0a r   if ,r  put  
 

2
2

2 2

3( ) (1 ) (0 ), (6)ra r r 
 

   
  

And define 
( ) ( ) (7)A z a z

  
For all complex z . It is clear that ' 2( )cA C R . We claim that  

2

3

1, (8)

0, (9)

24 2 , (10)
15

sR

R

R

A

A

A
 



 

  







    

 
The constants are so adjusted in (6) that (8) holds.  (Compute 
the integral in polar coordinates), (9) holds simply because A  

has compact support. To compute (10), express A  in polar 

coordinates, and note that 0,A


    

 
',A ar

    
Now define 

2 2

( ) ( ) ( ) ( ) (11)
R R

z f z Ad d A z f d d           
  

Since f  and A  have compact support, so does  . Since  
 

2

( ) ( )

[ ( ) ( )] ( ) (12)
R

z f z

f z f z A d d   

 

    

And ( ) 0A    if ,    (3) follows from (8). The 

difference quotients of A  converge boundedly to the 
corresponding partial derivatives, since ' 2( )cA C R . Hence 
the last expression in (11) may be differentiated under the 
integral sign, and we obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

The last equality depends on (9). Now (10) and (13) give (4). 
If we write (13) with x  and y  in place of ,  we see 

that   has continuous partial derivatives, if we can show that 
0   in ,G  where G  is the set of all z K  whose 

distance from the complement of K  exceeds .  We shall do 
this by showing that  
 ( ) ( ) ( ); (14)z f z z G    
Note that 0f   in G , since f  is holomorphic there. Now 
if ,z G  then z   is in the interior of K  for all   with 

.   The mean value property for harmonic functions 
therefore gives, by the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

  







  

  

 
 

  

For all z G  , we have now proved (3), (4), and (5) The 
definition of X  shows that X is compact and that X  can be 
covered by finitely many open discs 1,..., ,nD D  of radius 

2 ,  whose centers are not in .K  Since 2S K  is 
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connected, the center of each jD  can be joined to   by a 

polygonal path in 2S K . It follows that each jD contains a 

compact connected set ,jE  of diameter at least 2 ,  so that 
2

jS E  is connected and so that .jK E     with 

2r  . There are functions 2( )j jg H S E   and constants 

jb  so that the inequalities. 
 

2

2

50( , ) , (16)

1 4,000( , ) (17)

j

j

Q z

Q z
z z





 



 
 

   

Hold for jz E  and ,jD   if  
2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then  is an 

open set which contains .K  Put 1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 2 ,j n    
Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z       
And 

1( ) ( ) ( ) ( , ) ( 2 0 )

( )
X

F z R z d d

z

   



 



   

Since,  

1

1( ) ( )( ) ( , ) , (21)
i

j
j X

F z Q z d d   


     

(18) shows that F  is a finite linear combination of the 
functions jg  and 2

jg . Hence ( ).F H   By (20), (4), and 
(5) we have  

2 ( )( ) ( ) | ( , )

1 | ( ) (22)

X

F z z R z

d d z
z

  


  


 

 



  

Observe that the inequalities (16) and (17) are valid with R  in 
place of jQ  if X   and .z   Now fix  .z   , put 

,iz e     and estimate the integrand in (22) by (16) if 
4 ,   by (17) if 4 .    The integral in (22) is then 

seen to be less than the sum of 

4

0

50 12 808 (23)d


   
 

 
  

 
   

And  
2

24

4,0002 2,000 . (24)d



   




   

Hence (22) yields 
( ) ( ) 6,000 ( ) ( ) (25)F z z z       

Since ( ), ,F H K    and 2S K  is connected, 
Runge’s theorem shows that F  can be uniformly 
approximated on K  by polynomials. Hence (3) and (25) show 
that (2) can be satisfied. This completes the proof. 
 
Lemma 1.0 : Suppose ' 2( ),cf C R  the space of all 
continuously differentiable functions in the plane, with 
compact support. Put  

1 (1)
2

i
x y

  
     

  

Then the following “Cauchy formula” holds: 

2

1 ( )( )( )

( ) (2)
R

ff z d d
z

i

  
 

  


 



 

   

Proof: This may be deduced from Green’s theorem. However, 
here is a simple direct proof: 
Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1( )( ) ( , ) (3)
2

i if e r
r r

  


       
  

The right side of (2) is therefore equal to the limit, as 0,   
of 

 
2

0

1 (4)
2

i d dr
r r





 



        

 
 

 
 
For each 0,r   is periodic in ,  with period 2 . The 
integral of /    is therefore 0, and (4) becomes 

2 2

0 0

1 1 ( , ) (5)
2 2

d dr d
r

 



    
 

 
 

     

As 0, ( , ) ( )f z      uniformly.  This gives (2)  
 
If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the condition ( ) . 
Conversely, 
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,
( )( ) ( ),

nA
c X d X c d X finitesums   
   

  



 

  
�

  

and so if A  satisfies ( ) , then the subspace generated by the 

monomials ,X a  , is an ideal. The proposition gives a 

classification of the monomial ideals in  1,... nk X X : they 

are in one to one correspondence with the subsets A  of n�  
satisfying ( ) . For example, the monomial ideals in  k X  

are exactly the ideals ( ), 1nX n  , and the zero ideal 

(corresponding to the empty set A ). We write |X A    

for the ideal corresponding to A  (subspace generated by the 
,X a  ). 

 
LEMMA 1.1.  Let S  be a subset of n� . The the ideal a  

generated by ,X S   is the monomial ideal 
corresponding to   

 | ,
df

n nA some S       � �   

Thus, a monomial is in a  if and only if it is divisible by one 

of the , |X S   

PROOF.   Clearly A  satisfies   , and |a X A   . 

Conversely, if A , then n  �  for some S  , 

and X X X a     . The last statement follows from 

the fact that | nX X     � . Let nA �  

satisfy   . From the geometry of  A , it is clear that there is 

a finite set of elements  1,... sS     of A such that  

 2| ,n
i iA some S       � �  (The 'i s  

are the corners of A ) Moreover, |
df

a X A    is 

generated by the monomials ,i
iX S   . 

 
DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal generated by  

 ( ) |LT f f a   
 
LEMMA 1.2   Let a  be a nonzero ideal in   1 ,..., nk X X ; 

then ( ( ))LT a is a monomial ideal, and it equals 

1( ( ),..., ( ))nLT g LT g  for some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as the ideal 
generated by the leading monomials (rather than the leading 
terms) of elements of a . 
 
THEOREM 1.2.  Every ideal a  in  1 ,..., nk X X is 

finitely generated; more precisely, 1( ,..., )sa g g  where 

1,..., sg g are any elements of a  whose leading terms 

generate ( )LT a   
PROOF.   Let f a . On applying the division algorithm, 
we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X      , 

where either 0r   or no monomial occurring in it is divisible 
by any ( )iLT g . But i i

r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , implies that 
every monomial occurring in r  is divisible by one in 

( )iLT g . Thus 0r  , and 1( ,..., )sg g g . 
 
DEFINITION 1.1.   A finite subset  1,| ..., sS g g  of an 

ideal a  is a standard (
..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, S is a 
standard basis if the leading term of every element of a is 
divisible by at least one of the leading terms of the ig . 
 
THEOREM 1.3  The ring 1[ ,..., ]nk X X  is Noetherian i.e., 
every ideal is finitely generated. 
 
PROOF. For  1,n   [ ]k X  is a principal ideal domain, 
which means that every ideal is generated by single element. 
We shall prove the theorem by induction on n . Note that the 
obvious map 1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every polynomial f  in 

n  variables 1,... nX X  can be expressed uniquely as a 

polynomial in nX  with coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r
n n n r nf X X a X X X a X X      

Thus the next lemma will complete the proof 
 
LEMMA 1.3.  If A  is Noetherian, then so also is [ ]A X   
PROOF.          For a polynomial 
 

1
0 1 0( ) ... , , 0,r r

r if X a X a X a a A a        
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r  is called the degree of f , and 0a  is its leading coefficient. 
We call 0 the leading coefficient of the polynomial 0. 
 Let a  be an ideal in [ ]A X . The leading coefficients 

of the polynomials in a  form an ideal 'a  in A ,  and since 

A  is Noetherian, 'a will be finitely generated. Let 1,..., mg g  

be elements of a  whose leading coefficients generate 'a , and 
let r be the maximum degree of ig . Now let ,f a  and 

suppose f  has degree s r , say, ...sf aX   Then 
'a a  , and so we can write 

, ,i ii

i i

a ba b A

a leading coefficient of g

 




  

Now 

, deg( ),is r
i i i if b g X r g

  has degree deg( )f  . 
By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a polynomial of 

degree t r . For each d r , let da  be the subset of A  
consisting of 0 and the leading coefficients of all polynomials 
in a  of degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g  be polynomials of degree d  whose leading 

coefficients generate da . Then the same argument as above 

shows that any polynomial df  in a  of degree d  can be 

written 1 ,1 ,mod( ,... )
dd d d d mf f g g  With 1df   of 

degree 1d  . On applying this remark repeatedly we find 
that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

       
1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )

rt m r r m mf g g g g g g
   

 and so the polynomials 
01 0,,..., mg g  generate a   

 
One of the great successes of category theory in computer 
science has been the development of a “unified theory” of the 
constructions underlying denotational semantics. In the 
untyped  -calculus,  any term may appear in the function 
position of an application. This means that a model D of the 
 -calculus must have the property that given a term t  whose 
interpretation is ,d D  Also, the interpretation of a 
functional abstraction like x . x  is most conveniently 
defined as a function from Dto D  , which must then be 

regarded as an element of D. Let  : D D D    be the 
function that picks out elements of D to  represent elements of 

 D D  and  : D D D    be the function that 

maps elements of D to functions of D.  Since ( )f  is 

intended to represent the function f  as an element of D, it 

makes sense to require that ( ( )) ,f f    that is, 

 D Do id     Furthermore, we often want to view every 

element of D as representing some function from D to D and 
require that elements representing the same function be equal 
– that is   

( ( ))

D

d d
or

o id

 

 




  

The latter condition is called extensionality. These conditions 
together imply that and   are inverses--- that is, D is 
isomorphic to the space of functions from D to D  that can be 
the interpretations of functional abstractions:  D D D   
.Let us suppose we are working with the untyped 

calculus  , we need a solution ot the equation 

 ,D A D D    where A is some predetermined 
domain containing interpretations for elements of C.  Each 
element of D corresponds to either an element of A or an 
element of  ,D D  with a tag. This equation can be 
solved by finding least fixed points of the function 

 ( )F X A X X    from domains to domains --- that 

is, finding domains X  such that   ,X A X X    and 
such that for any domain Y also satisfying this equation, there 
is an embedding of X to Y  --- a pair of maps 

R

f

f

X Y�   

Such that   
R

X
R

Y

f o f id
f o f id




  

Where f g  means that f approximates g  in some 
ordering representing their information content. The key shift 
of perspective from the domain-theoretic to the more general 
category-theoretic approach lies in considering F not as a 
function on domains, but as a functor on a category of 
domains. Instead of a least fixed point of the function, F. 
 
Definition 1.3: Let K be a category and :F K K  as a 
functor. A fixed point of F is a pair (A,a), where A is a K-
object and : ( )a F A A  is an isomorphism. A prefixed 
point of F is a pair (A,a), where A is a K-object and a is any 
arrow from F(A) to A 
Definition 1.4 : An chain   in a category K  is a diagram 
of the following form: 
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1 2

1 2 .....
of f f

oD D D       
Recall that a cocone   of an chain    is a K-object X 

and a collection of K –arrows  : | 0i iD X i    such 

that 1i i io f    for all 0i  . We sometimes write 

: X   as a reminder of the arrangement of 's  
components Similarly, a colimit : X  is a cocone with 

the property that if ': X   is also a cocone then there 

exists a unique mediating arrow ':k X X  such that for all 
0,, i ii v k o  . Colimits of chains   are sometimes 

referred to as limco its  . Dually, an op chain   in K 
is a diagram of the following form: 

1 2

1 2 .....
of f f

oD D D    
 
A cone : X   of an 

op chain    is a K-object X and a collection of K-arrows 

 : | 0i iD i   such that for all 10, i i ii f o    . An  
op -limit of an op chain     is a cone : X   

with the property that if ': X  is also a cone, then there 
exists a unique mediating arrow ':k X X  such that for 
all 0, i ii o k    . We write k  (or just  ) for the 
distinguish initial object of K, when it has one, and A  
for the unique arrow from   to each K-object A. It is also 

convenient to write 
1 2

1 2 .....
f f

D D    to denote all of 

  except oD  and 0f . By analogy,    is  | 1i i  . For 

the images of   and   under F we write  
1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write iF  for the i-fold iterated composition of F – that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f    ,etc. 

With these definitions we can state that every monitonic 
function on a complete lattice has a least fixed point: 
 
Lemma 1.4. Let K  be a category with initial object   and let 

:F K K  be a functor. Define the chain    by 
2! ( ) (! ( )) (! ( ))

2( ) ( ) .........
F F F F F

F F
     

        

If both : D    and ( ) : ( ) ( )F F F D   are 
colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D   is the mediating arrow from ( )F    to the 

cocone  

  
 
 
Theorem 1.4 Let a DAG G given in which each node is a 
random variable, and let a discrete conditional probability 
distribution of each node given values of its parents in G be 
specified. Then the product of these conditional distributions 
yields a joint probability distribution P of the variables, and 
(G,P) satisfies the Markov condition. 
 
Proof. Order the nodes according to an ancestral ordering. Let 

1 2, ,........ nX X X be the resultant ordering. Next define.  
 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...
.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa
P x pa P x pa

 
 

Where iPA is the set of parents of iX of in G and 

( | )i iP x pa is the specified conditional probability 
distribution. First we show this does indeed yield a joint 
probability distribution. Clearly, 1 20 ( , ,... ) 1nP x x x   for 
all values of the variables. Therefore, to show we have a joint 
distribution, as the variables range through all their possible 
values, is equal to one. To that end, Specified conditional 
distributions are the conditional distributions they notationally 
represent in the joint distribution. Finally, we show the 
Markov condition is satisfied. To do this, we need show for 
1 k n   that  

whenever 

( ) 0, ( | ) 0
( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa
and P x pa

then P x nd pa P x pa

 




 

Where kND is the set of nondescendents of kX of in G. Since 

k kPA ND , we need only show 

( | ) ( | )k k k kP x nd P x pa . First for a given k , order the 

nodes so that all and only nondescendents of kX precede kX
in the ordering. Note that this ordering depends on k , whereas 
the ordering in the first part of the proof does not. Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X
Let
D X X X



 





 

follows 
kd    
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We define the thm cyclotomic field to be the field 

  / ( ( ))mQ x x
 
Where ( )m x is the thm cyclotomic 

polynomial.   / ( ( ))mQ x x  ( )m x  has degree ( )m

over Q since ( )m x has degree ( )m . The roots of 

( )m x  are just the primitive thm roots of unity, so the 

complex embeddings of   / ( ( ))mQ x x are simply the 

( )m maps  

 : / ( ( )) ,
1 , ( , ) 1,

( ) ,

k m

k
k m

Q x x C
k m k m where

x



 



 





  

m being our fixed choice of primitive thm root of unity. Note 

that ( )k
m mQ  for every ;k it follows that 

( ) ( )k
m mQ Q  for all k relatively prime to m . In 

particular, the images of the i coincide, so 

  / ( ( ))mQ x x is Galois over Q . This means that we can 

write ( )mQ  for   / ( ( ))mQ x x without much fear of 
ambiguity; we will do so from now on, the identification being 

.m x  One advantage of this is that one can easily talk 
about cyclotomic fields being extensions of one another,or 
intersections or compositums; all of these things take place 
considering them as subfield of .C  We now investigate some 
basic properties of cyclotomic fields. The first issue is whether 
or not they are all distinct; to determine this, we need to know 
which roots of unity lie in ( )mQ  .Note, for example, that if 

m is odd, then m is a 2 thm root of unity. We will show that 

this is the only way in which one can obtain any non- thm
roots of unity. 
 
LEMMA 1.5   If m divides n , then ( )mQ   is contained in 

( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ  so the 

result is clear 
 
LEMMA 1.6   If m and n are relatively prime, then  
  ( , ) ( )m n nmQ Q    
and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   
 

PROOF. One checks easily that m n  is a primitive thmn root 
of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :
( ) ( ) ( );

m n m nQ Q Q Q Q Q
m n mn
   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q    We know that ( , )m nQ   has degree 

( )mn  over  Q , so we must have  

  ( , ) : ( ) ( )m n mQ Q n     
and 

 ( , ) : ( ) ( )m n mQ Q m     
 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    
 

PROPOSITION 1.2 For any m and n  
 

 ,( , ) ( )m n m nQ Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common multiple and 
the greatest common divisor of m and ,n respectively. 

 
PROOF.    Write 1 1

1 1...... ....k ke fe f
k km p p and p p where the 

ip are distinct primes. (We allow i ie or f to be zero) 
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1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and
Q Q Q Q

Thus
Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 
An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 
Mutual information measures the information transferred 
when ix  is sent and iy  is received, and is defined as 

2

( )
( , ) log (1)

( )

i

i
i i

i

xP yI x y bits
P x

  

In a noise-free channel, each iy is uniquely connected to the 

corresponding ix  , and so they constitute an input –output pair 

( , )i ix y  for which 

 2
1( ) 1 ( , ) log
( )

i
i j

j i

xP and I x yy P x
  bits; that is, the 

transferred information is equal to the self-information that 
corresponds to the input ix  In a very noisy channel, the output 

iy and input ix would be completely uncorrelated, and so 

( ) ( )i
i

j

xP P xy   and also ( , ) 0;i jI x y  that is, there is no 

transference of information. In general, a given channel will 
operate between these two extremes. The mutual information 
is defined between the input and the output of a given channel. 
An average of the calculation of the mutual information for all 
input-output pairs of a given channel is the average mutual 
information: 

2
. .

(
( , ) ( , ) ( , ) ( , ) log

( )

i

j
i j i j i j

i j i j i

xP y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 
 bits per 

symbol . This calculation is done over the input and output 
alphabets. The average mutual information. The following 
expressions are useful for modifying the mutual information 
expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yxP x y P P y P P xy x
yP y P P xx

xP x P P yy

 









 

Then 

.

2
.

2
.

2
.

2

2

( , ) ( , )

1( , ) log
( )

1( , ) log
( )

1( , ) log
( )

1( ) ( ) log
( )

1( ) log ( )
( )

( , ) ( ) ( )

i j
i j

i j
i j i

i j
ii j

j

i j
i j i

i
j

ji i

i
i i

I X Y P x y

P x y
P x

P x y xP y

P x y
P x

xP P yy P x

P x H X
P x

XI X Y H X H Y



 
  

 
 
 

  
 
 

 
 
 

    



 













 

Where 2,

1( ) ( , ) log
( )

i ji j
i

j

XH P x yY xP y

  is 

usually called the equivocation. In a sense, the equivocation 
can be seen as the information lost in the noisy channel, and is 
a function of the backward conditional probability. The 
observation of an output symbol jy provides 

( ) ( )XH X H Y  bits of information. This difference is the 

mutual information of the channel. Mutual Information: 
Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yxP P y P P xy x  

The mutual information fits the condition 
( , ) ( , )I X Y I Y X  

And by interchanging input and output it is also true that 

( , ) ( ) ( )YI X Y H Y H X   

Where 
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2
1( ) ( ) log
( )j

j j

H Y P y
P y

  

This last entropy is usually called the noise entropy. Thus, the 
information transferred through the channel is the difference 
between the output entropy and the noise entropy. 
Alternatively, it can be said that the channel mutual 
information is the difference between the number of bits 
needed for determining a given input symbol before knowing 
the corresponding output symbol, and the number of bits 
needed for determining a given input symbol after knowing 
the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H Y   

As the channel mutual information expression is a difference 
between two quantities, it seems that this parameter can adopt 
negative values. However, and is spite of the fact that for some 

, ( / )j jy H X y  can be larger than ( )H X , this is not 
possible for the average value calculated over all the outputs: 

2 2
, ,

( ) ( , )
( , ) log ( , ) log

( ) ( ) ( )

i

j i j
i j i j

i j i ji i j

xP y P x y
P x y P x y

P x P x P y
   

Then 

,

( ) ( )
( , ) ( , ) 0

( , )
i j

i j
i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2
1

log ( ) 0
M

i
i

i i

QP
P

  

The above expression can be applied due to the factor 
( ) ( ),i jP x P y which is the product of two probabilities, so 

that it behaves as the quantity iQ , which in this expression is 

a dummy variable that fits the condition 1ii
Q  . It can be 

concluded that the average mutual information is a non-
negative number. It can also be equal to zero, when the input 
and the output are independent of each other. A related 
entropy called the joint entropy is defined as 

2
,

2
,

2
,

1( , ) ( , ) log
( , )

( ) ( )
( , ) log

( , )

1( , ) log
( ) ( )

i j
i j i j

i j
i j

i j i j

i j
i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 
 
Theorem 1.5: Entropies of the binary erasure channel (BEC) 
The BEC is defined with an alphabet of two inputs and three 
outputs, with symbol probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition probabilities 

 
3 2

2 1

3
1

1
2

3
2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y yP p and Px x
yand P x
yand P px
yand P px

  





 

 

 
Lemma 1.7. Given an arbitrary restricted time-discrete, 
amplitude-continuous channel whose restrictions are 
determined by sets nF and whose density functions exhibit no 
dependence on the state s , let n be a fixed positive integer, 
and ( )p x an arbitrary probability density function on 

Euclidean n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F . For any real 

number a, let 
( | )( , ) : log (1)

( )
p y xA x y a

p y
 

  
 

 

Then for each positive integer u , there is a code ( , , )u n 
such that 

   ( , ) (2)aue P X Y A P X F       
Where 
 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 

 

Proof: A sequence (1)x F such that 

 
 

1
(1)| 1

: ( , ) ;
x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)xA . Having chosen 
(1) ( 1),........, kx x  and 1 1,..., kB B  , select kx F such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 
 

Set ( )

1

1k

k
k ix i

B A B


  , If the process does not terminate 

in a finite number of steps, then the sequences ( )ix and 
decoding sets , 1,2,..., ,iB i u form the desired code. Thus 
assume that the process terminates after t  steps. (Conceivably 

0t  ). We will show t u  by showing that  

   ( , )ate P X Y A P X F      . We proceed as 
follows.  
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Let 

 
1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )
x

x

t
jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 
 
 

F. Algorithms 
Ideals.    Let A be a ring. Recall that an ideal a in A is a 
subset such that a is subgroup of A regarded as a group under 
addition; 

 ,a a r A ra A       
The ideal generated by a subset S of A is the intersection of all 
ideals A containing a ----- it is easy to verify that this is in fact 
an ideal, and that it consist of all finite sums of the form 

i i
r s  with ,i ir A s S  . When  1,....., mS s s , we 

shall write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set  | ,a b a a b b    is 

an ideal, denoted by a b . The ideal generated by  

 | ,ab a a b b  is denoted by ab . Note that 

ab a b  . Clearly ab consists of all finite sums i i
a b  

with ia a  and ib b , and if 1( ,..., )ma a a  and 

1( ,..., )nb b b , then 1 1( ,..., ,..., )i j m nab a b a b a b .Let a  
be an ideal of A. The set of cosets of a in A forms a ring 

/A a , and a a a  is a homomorphism : /A A a  . 

The map 1( )b b  is a one to one correspondence 
between the ideals of /A a  and the ideals of A  containing a
An ideal p  if prime if p A  and ab p a p    or 

b p . Thus p  is prime if and only if /A p  is nonzero and 

has the property that  0, 0 0,ab b a      i.e., 
/A p is an integral domain. An ideal m  is maximal if 

|m A  and there does not exist an ideal n  contained strictly 
between m and A . Thus m is maximal if and only if /A m  
has no proper nonzero ideals, and so is a field. Note that m  
maximal   m prime. The ideals of A B  are all of the 
form a b , with a  and b  ideals in A  and B . To see this, 
note that if c  is an ideal in  A B  and ( , )a b c , then 

( ,0) ( , )(1,0)a a b c   and (0, ) ( , )(0,1)b a b c  . This 
shows that c a b   with  

 | ( , )a a a b c some b b  
  

and  

   | ( , )b b a b c some a a  
 

 
Let A  be a ring. An A -algebra is a ring B  together with a 
homomorphism :Bi A B . A homomorphism of A -algebra 

B C  is a homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all . An  A -algebra B is said 
to be finitely generated ( or of finite-type over A) if there exist 
elements 1,..., nx x B  such that every element of B can be 

expressed as a polynomial in the ix  with coefficients in ( )i A
, i.e., such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring homomorphism 

A B  is finite, and B  is finitely generated as an A-
module. Let k  be a field, and let A be a k -algebra. If 1 0  
in A , then the map k A  is injective, we can identify k
with its image, i.e., we can regard k as a subring of A  . If 1=0 
in a ring R, the R is the zero ring, i.e.,  0R  . Polynomial 

rings.  Let  k  be a field. A monomial in 1,..., nX X  is an 

expression of the form 1
1 ... ,naa

n jX X a N  . The total 

degree of the monomial is ia . We sometimes abbreviate it 

by 1, ( ,..., ) n
nX a a   � . The elements of the 

polynomial ring  1,..., nk X X  are finite sums
1

1 1.... 1 ....... , ,n

n n

aa
a a n a a jc X X c k a  �

   
With the obvious notions of equality, addition and 
multiplication. Thus the monomials from basis for  

 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only units in it 
are the nonzero constant polynomials. A polynomial 

1( ,..., )nf X X  is irreducible if it is nonconstant and has only 

the obvious factorizations, i.e., f gh g   or h  is 

constant. Division in  k X . The division algorithm allows 

us to divide a nonzero polynomial into another: let f  and g  

be polynomials in  k X with 0;g   then there exist unique 

polynomials  ,q r k X  such that f qg r   with either 

0r   or deg r  < deg g . Moreover, there is an algorithm for 

a A
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deciding whether ( )f g , namely, find r and check 
whether it is zero. Moreover, the Euclidean algorithm allows 
to pass from finite set of generators for an ideal in  k X to a 
single generator by successively replacing each pair of 
generators with their greatest common divisor. 

 
 (Pure) lexicographic ordering (lex). Here monomials are 
ordered by lexicographic(dictionary) order. More precisely, let 

1( ,... )na a   and 1( ,... )nb b   be two elements of n� ; 

then     and  X X  (lexicographic ordering) if, in 
the vector difference   � , the left most nonzero entry 
is positive. For example,  
 2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that this isn’t 
quite how the dictionary would order them: it would put 
XXXYYZZZZ  after XXXYYZ . Graded reverse 

lexicographic order (grevlex). Here monomials are ordered by 
total degree, with ties broken by reverse lexicographic 
ordering. Thus,    if i ia b  , or i ia b   

and in    the right most nonzero entry is negative. For 
example:  

4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 
5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ  . 

 
Orderings on  1,... nk X X  . Fix an ordering on the 

monomials in  1,... nk X X . Then we can write an element 

f  of  1,... nk X X  in a canonical fashion, by re-ordering its 
elements in decreasing order. For example, we would write 

2 2 3 2 24 4 5 7f XY Z Z X X Z      
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex       
or 

2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex      
Let  1,..., na X k X X

   , in decreasing order: 

0 1

0 1 0 1 0..., ..., 0f a X X 
         

  
Then we define. 

 The multidegree of f  to be multdeg( f )= 0 ;  

 The leading coefficient of f to be LC( f )=
0

a ; 

 The leading monomial of  f to be LM( f ) = 0X  ; 

 The leading term of f to be LT( f ) = 0

0
a X 
   

For the polynomial 24 ...,f XY Z   the multidegree is 
(1,2,1), the leading coefficient is 4, the leading monomial is 

2XY Z , and the leading term is  24XY Z . The division 
algorithm in  1,... nk X X . Fix a monomial ordering in 2�

. Suppose given a polynomial f  and an ordered set 

1( ,... )sg g  of polynomials; the division algorithm then 

constructs polynomials 1,... sa a  and r   such that 

1 1 ... s sf a g a g r      Where either 0r   or no 

monomial in r  is divisible by any of 1( ),..., ( )sLT g LT g   

Step 1: If 1( ) | ( )LT g LT f , divide 1g  into f  to get 

 1 1 1 1
1

( ), ,...,
( ) n

LT ff a g h a k X X
LT g

   
 

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not divisible by 

1( )LT g . Now divide 2g  into 1f , and so on, until 

1 1 1... s sf a g a g r      With 1( )LT r  not divisible by 

any 1( ),... ( )sLT g LT g   Step 2: Rewrite 1 1 2( )r LT r r  , 

and repeat Step 1 with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 'ia s  )   
Monomial ideals. In general, an ideal a  will contain a 
polynomial without containing the individual terms of the 
polynomial; for example, the ideal 2 3( )a Y X   contains 

2 3Y X but not 2Y  or 3X . 
 

DEFINITION 1.5. An ideal a  is monomial if 
c X a X a 
     

 all   with 0c  .  
PROPOSITION 1.3. Let a be a monomial ideal, and let 

 |A X a  . Then A satisfies the condition 

, ( )nA        �   And a  is the k -

subspace of  1,..., nk X X  generated by the ,X A   . 

Conversely, of A  is a subset of n�  satisfying   , then the 

k-subspace  a  of  1,..., nk X X  generated by 

 |X A   is a monomial ideal. 

 
PROOF.  It is clear from its definition that a monomial ideal 
a  is the  k -subspace of  1,..., nk X X
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generated by the set of monomials it contains. If 
X a 

 and 

 1,..., nX k X X 
 . 

   
If a permutation is chosen uniformly and at random from the 

!n  possible permutations in ,nS  then the counts ( )n
jC  of 

cycles of length j  are dependent random variables. The joint 

distribution of ( ) ( ) ( )
1( ,..., )n n n

nC C C  follows from 
Cauchy’s formula, and is given by 

( )

1 1

1 1 1[ ] ( , ) 1 ( ) , (1.1)
! !

j
nn

cn
j

j j j

P C c N n c jc n
n j c 

 
    

 
 

  
for nc � .  
 
Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1( ) 1 (1.4)
j

j

n

mn n n
mn

j j
jj j

m m

E C jm n
j  

     
             

 
  

Proof.   This can be established directly by exploiting 

cancellation of the form 
[ ] !/ 1/ ( )!jm
j j j jc c c m    when 

,j jc m  which occurs between the ingredients in Cauchy’s 
formula and the falling factorials in the moments. Write 

jm jm . Then, with the first sum indexed by 

1( ,... ) n
nc c c  �  and the last sum indexed by  

1( ,..., ) n
nd d d  �  via the correspondence 

,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 11
( )!

j j

j

j
j j

j j

n n
m mn n

j j
cj j

mnn
j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 1( ),m n  

corresponding to the fact that if 0,n m   then 0jd   for 

,j n m   and a random permutation in n mS   must have 

some cycle structure 1( ,..., )n md d  . The moments of ( )n
jC   

follow immediately as 

 ( ) [ ]( ) 1 (1.2)n r r
jE C j jr n    

We note for future reference that (1.4) can also be written in 
the form  

[ ] [ ]( )

11 1
( ) 1 , (1.3)j j

n n n
m mn

j j j
jj j

E C E Z jm n
 

     
      

    
    

Where the jZ  are independent Poisson-distribution random 

variables that satisfy ( ) 1 /jE Z j   
 
The marginal distribution of cycle counts provides a formula 
for the joint distribution of the cycle counts ,n

jC  we find the 

distribution of n
jC  using a combinatorial approach combined 

with the inclusion-exclusion formula. 
 
Lemma  1.8.   For 1 ,j n   

 [ / ]
( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j
l

j jP C k
k l

 



     

Proof.     Consider the set I  of all possible cycles of length 
,j  formed with elements chosen from  1, 2,... ,n  so that 

[ ]/j jI n . For each ,I  consider the “property” G  of 

having ;  that is,  G is the set of permutations nS   
such that   is one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,..., n  not in   
must be permuted among themselves. To use the inclusion-
exclusion formula we need to calculate the term ,rS  which is 
the sum of the probabilities of the r -fold intersection of 
properties, summing over all sets of r distinct properties. 
There are two cases to consider. If the r properties are 
indexed by r cycles having no elements in common, then the 
intersection specifies how rj  elements are moved by the 

permutation, and there are ( )!1( )n rj rj n   permutations 

in the intersection. There are [ ] / ( !)rj rn j r  such intersections. 
For the other case, some two distinct properties name some 
element in common, so no permutation can have both these 
properties, and the r -fold intersection is empty. Thus 

[ ]

( )!1( )

1 11( )
! ! !

r
rj

r r

S n rj rj n
n rj n
j r n j r

  

  
  

Finally, the inclusion-exclusion series for the number of 
permutations having exactly k  properties is 

,
0
( 1)l

k l
l

k l
S

l 


 
  

 
   

Which simplifies to (1.1) Returning to the original hat-check 
problem, we substitute j=1 in (1.1) to obtain the distribution of 
the number of fixed points of a random permutation. For 

0,1,..., ,k n   
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( )
1

0

1 1[ ] ( 1) , (1.2)
! !

n k
n l

l
P C k

k l





     

and the moments of ( )
1

nC  follow from (1.2) with 1.j   In 

particular, for  2,n   the mean and variance of ( )
1

nC are both 

equal to 1. The joint distribution of ( ) ( )
1( ,..., )n n

bC C  for any 

1 b n   has an expression similar to (1.7); this too can be 
derived by inclusion-exclusion. For any 1( ,..., ) b

bc c c  �  

with ,im ic   

1

( ) ( )
1

...

01 1

[( ,..., ) ]

1 1 1 1( 1) (1.3)
! !

i i

b

i

n n
b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l
 

 
 



          
     



    

The joint moments of the first b  counts ( ) ( )
1 ,...,n n

bC C  can be 
obtained directly from (1.2) and (1.3) by setting 

1 ... 0b nm m      
 

The limit distribution of cycle counts 
It follows immediately from Lemma 1.2 that for each fixed 

,j  as ,n  

( ) 1/[ ] , 0,1, 2,...,
!

k
n j

j
jP C k e k
k


     

So that ( )n
jC converges in distribution to a random variable 

jZ  having a Poisson distribution with mean 1/ ;j  we use the 

notation ( )n
j d jC Z  where (1 / )j oZ P j�   to describe 

this. Infact, the limit random variables are independent. 
 
Theorem 1.6   The process of cycle counts converges in 
distribution to a Poisson process of �  with intensity 1j . 
That is, as ,n    

( ) ( )
1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z   

Where the , 1, 2,...,jZ j   are independent Poisson-

distributed random variables with  
1( )jE Z
j

   

Proof.  To establish the converges in distribution one shows 
that for each fixed 1,b   as ,n   

 ( ) ( )
1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     
 
Error rates 
The proof of Theorem says nothing about the rate of 
convergence. Elementary analysis can be used to estimate this 

rate when 1b  . Using properties of alternating series with 
decreasing terms, for 0,1,..., ,k n   

( )
1 1

1 1 1( ) [ ] [ ]
! ( 1)! ( 2)!

1
!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

   

 
It follows that  

1 1
( )
1 1

0

2 2 1[ ] [ ] (1.11)
( 1)! 2 ( 1)!

n nn
n

k

n P C k P Z k
n n n

 




    

     

Since 
1

1
1 1 1[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!
eP Z n

n n n n n



     
    

  

We see from (1.11) that the total variation distance between 
the distribution ( )

1( )nL C  of ( )
1

nC  and the distribution 1( )L Z  

of 1Z  
 
Establish the asymptotics of ( )( )n

nA C     under conditions 

0( )A  and 01( ),B  where 

 
'

( ) ( )

1 1

( ) 0 ,
i i

n n
n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for some 
' 0.g    We start with the expression 

'

'
( ) 0

0

0
1

1

[ ( ) ][ ( )]
[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i
i n i

r j r

P T Z nP A C
P T Z n

E
ir


 
  






 
  

 


  

  

'
0

1 1

1

1 '
1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d i d i d
n

O n n


 



 







 
   

 



   

and 

  

'
0

1 1

1

1
1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d i d i d
n

O n n


 



 







 
   

 



  

Where  
'
1,2,7 ( )n  refers to the quantity derived from 'Z . It 

thus follows that ( ) (1 )[ ( )]n d
nP A C Kn  �  for a constant 
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K , depending on Z  and the '
ir  and computable explicitly 

from (1.1) – (1.3), if Conditions 0( )A  and 01( )B  are satisfied 

and if 
'

( )g
i O i    from some ' 0,g   since, under these 

circumstances, both  
1 '

1,2,7 ( )n n  and   
1

1,2,7 ( )n n  tend 

to zero as .n   In particular, for polynomials and square 
free polynomials, the relative error in this asymptotic 
approximation is of order 1n  if ' 1.g    
 
For 0 / 8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))
( , ),

TV

TV

d L C b L Z b

d L C b L Z b
n b




� �

  

Where  7,7 ( , ) ( / )n b O b n   under Conditions 0 1( ), ( )A D  

and 11( )B  Since, by the Conditioning Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
� �

  
It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))
( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]1 (1.4)
[ ( ) ]

TV

TV b b

bA r A

bn

n

d L C b L Z b
d L T C L T Z

P T Z r

P T Z n r
P T Z n





 

  
 

 



� �

  

Suppressing the argument Z  from now on, we thus obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
� �

 

0
0 0

[ ][ ] 1
[ ]
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b
r n

P T n rP T r
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[ ][ ]
[ ]

n
b

b
r n r b

P T rP T r
P T n 


  

   

0
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b bn bn
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 
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0 0
/ 2 0

[ ] [ ]
n

b b
r n r

P T r P T r
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      
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0
0 0

[ /2]

0 0
0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b
s n
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P T r P T s P T n s P T n
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 



     



 
 The first sum is at most 1

02 ;bn ET the third is bound by 

 

0 0/ 2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3 ,
[0,1]

b nn s n
P T s P T n

n b n
n P
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2

0 010.8
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3 14 ( ) [ ] [ ]
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b
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n ET
P n












 
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

  



 
  

Hence we may take 

 
 

 

10.81
07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6 ( / 2, ) (1.5)
[0,1]

b

n
n b n ET Z P

P

n b
P
















    
  



  

 
Required order under Conditions 0 1( ), ( )A D  and 11( ),B  if 

( ) .S    If not,    10.8 n  can be replaced by    10.11 n 

in the above, which has the required order, without the 
restriction on the ir  implied by ( )S   . Examining the 

Conditions  0 1( ), ( )A D  and 11( ),B it is perhaps surprising to 

find that 11( )B  is required instead of just 01( );B  that is, that 

we should need 1

2
( )a

ill
l O i 


   to hold for some 

1 1a  . A first observation is that a similar problem arises 

with the rate of decay of 1i  as well. For this reason, 1n  is 

replaced by 1n
�

. This makes it possible to replace condition 

1( )A  by the weaker pair of conditions 0( )A and 1( )D in the 

eventual assumptions needed for    7,7 ,n b  to be of order 

( / );O b n   the decay rate requirement of order 1i    is 

shifted from 1i  itself to its first difference. This is needed to 
obtain the right approximation error for the random mappings 
example. However, since all the classical applications make 
far more stringent assumptions about the 1, 2,i l   than are 

made in 11( )B . The critical point of the proof is seen where 
the initial estimate of the difference
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( ) ( )[ ] [ 1]m m
bn bnP T s P T s    . The factor  10.10 ( ),n  

which should be small, contains a far tail element from 1n
�

 of 
the form 1 1( ) ( ),n u n   which is only small if 1 1,a   

being otherwise of order 11( )aO n    for any 0,   since 

2 1a   is in any case assumed. For / 2,s n  this gives rise 

to a contribution of order  11( )aO n     in the estimate of the 

difference [ ] [ 1],bn bnP T s P T s     which, in the 
remainder of the proof, is translated into a contribution of 
order 11( )aO tn    for differences of the form 

[ ] [ 1],bn bnP T s P T s     finally leading to a 

contribution of order 1abn    for any 0   in  7.7 ( , ).n b  

Some improvement would seem to be possible, defining the 
function g  by    ( ) 1 1 ,w s w s tg w       differences that are 

of the form [ ] [ ]bn bnP T s P T s t     can be directly 
estimated, at a cost of only a single contribution of the form 

1 1( ) ( ).n u n   Then, iterating the cycle, in which one 
estimate of a difference in point probabilities is improved to 
an estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a
bn bnP T s P T s t O n t n          for any 

0   could perhaps be attained, leading to a final error 
estimate in order  11( )aO bn n    for any 0  , to 

replace  7.7 ( , ).n b  This would be of the ideal order 

( / )O b n for large enough ,b  but would still be coarser for 
small .b   
 
 
With b and n  as in the previous section, we wish to show that  

 

1
0 0

7,8

1( ( [1, ]), ( [1, ])) ( 1) 1
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Where  
121 1

7.8 ( , ) ( [ ])n b O n b n b n        for any 

0   under Conditions 0 1( ), ( )A D  and 12( ),B with 12 . 
The proof uses sharper estimates. As before, we begin with the 
formula  
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Now we observe that  
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The approximation in (1.2) is further simplified by noting that  
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and then by observing that  
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Combining the contributions of (1.2) –(1.3), we thus find tha
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The quantity  7.8 ( , )n b is seen to be of the order claimed 

under Conditions 0 1( ), ( )A D  and 12( )B , provided that 

( ) ;S    this supplementary condition can be removed if 

 10.8 ( )n   is replaced by  10.11 ( )n     in the definition of 

 7.8 ( , )n b , has the required order without the restriction on 

the ir  implied by assuming that ( ) .S   Finally, a direct 
calculation now shows that 
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Example 1.0.  Consider the point (0,...,0) nO  � . For 
an arbitrary vector r , the coordinates of the point x O r   
are equal to the respective coordinates of the vector 

1: ( ,... )nr x x x  and 1( ,..., )nr x x . The vector r such as 
in the example is called the position vector or the radius vector 
of the point x  . (Or, in greater detail: r  is the radius-vector of 
x  w.r.t an origin O). Points are frequently specified by their 
radius-vectors. This presupposes the choice of O as the 
“standard origin”.   Let us summarize. We have considered 

n�  and interpreted its elements in two ways: as points and as 
vectors. Hence we may say that we leading with the two 
copies of  :n�  

n� = {points},      n� = {vectors}  
Operations with vectors: multiplication by a number, addition. 
Operations with points and vectors: adding a vector to a point 
(giving a point), subtracting two points (giving a vector). n�

treated in this way is called an n-dimensional affine space. (An 
“abstract” affine space is a pair of sets , the set of points and 
the set of vectors so that the operations as above are defined 
axiomatically). Notice that vectors in an affine space are also 
known as “free vectors”. Intuitively, they are not fixed at 
points and “float freely” in space. From n� considered as an 
affine space we can precede in two opposite directions: n�  as 
an Euclidean space   n� as an affine space   n� as a 
manifold.Going to the left means introducing some extra 
structure which will make the geometry richer. Going to the 
right means forgetting about part of the affine structure; going 
further in this direction will lead us to the so-called “smooth 
(or differentiable) manifolds”. The theory of differential forms 
does not require any extra geometry. So our natural direction 
is to the right. The Euclidean structure, however, is useful for 
examples and applications. So let us say a few words about it: 
 
Remark 1.0.  Euclidean geometry.  In n�  considered as 
an affine space we can already do a good deal of geometry. 
For example, we can consider lines and planes, and quadric 
surfaces like an ellipsoid. However, we cannot discuss such 
things as “lengths”, “angles” or “areas” and “volumes”. To be 
able to do so, we have to introduce some more definitions, 
making n� a Euclidean space. Namely, we define the length 
of a vector 1( ,..., )na a a  to be  

1 2 2: ( ) ... ( ) (1)na a a     
After that we can also define distances between points as 
follows: 

( , ) : (2)d A B AB


  

One can check that the distance so defined possesses natural 
properties that we expect: is it always non-negative and equals 
zero only for coinciding points; the distance from A to B is the 
same as that from B to A (symmetry); also, for three points, A, 
B and C, we have ( , ) ( , ) ( , )d A B d A C d C B   (the 
“triangle inequality”). To define angles, we first introduce the 
scalar product of two vectors 
 1 1( , ) : ... (3)n na b a b a b     

Thus ( , )a a a  . The scalar product is also denote by dot: 

. ( , )a b a b , and hence is often referred to as the “dot 
product” . Now, for nonzero vectors, we define the angle 
between them by the equality 

( , )cos : (4)a b
a b

    

The angle itself is defined up to an integral multiple 
of 2  . For this definition to be consistent we have to ensure 
that the r.h.s. of (4) does not exceed 1 by the absolute value. 
This follows from the inequality 
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2 22( , ) (5)a b a b   
known as the Cauchy–Bunyakovsky–Schwarz inequality 
(various combinations of these three names are applied in 
different books). One of the ways of proving (5) is to consider 
the scalar square of the linear combination ,a tb  where 

t R . As  ( , ) 0a tb a tb    is a quadratic polynomial in 
t  which is never negative, its discriminant must be less or 
equal zero. Writing this explicitly yields (5). The triangle 
inequality for distances also follows from the inequality (5). 

 
Example 1.1.    Consider the function ( ) if x x  (the i-th 

coordinate). The linear function idx  (the differential of ix  ) 

applied to an arbitrary vector h  is simply ih .From these 
examples follows that we can rewrite df  as 

1
1 ... , (1)n

n
f fdf dx dx
x x
 

  
 

  

which is the standard form. Once again: the partial derivatives 
in (1) are just the coefficients (depending on x ); 1 2, ,...dx dx  
are linear functions giving on an arbitrary vector h  its 
coordinates 1 2, ,...,h h  respectively. Hence 

  

1
( ) 1( )( )

... , (2)

hf x

n
n

fdf x h h
x

f h
x


   







 

 
Theorem   1.7.     Suppose we have a parametrized curve 

( )t x t  passing through 0
nx �  at 0t t  and with the 

velocity vector 0( )x t   Then  

0 0 0
( ( )) ( ) ( ) ( )( ) (1)df x t t f x df x
dt       

 
Proof.  Indeed, consider a small increment of the parameter 

0 0:t t t t  , Where 0t  . On the other hand, we 

have  0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for an 

arbitrary vector h , where ( ) 0h   when 0h   . 
Combining it together, for the increment of ( ( ))f x t   we 
obtain 

0 0

0

0

( ( ) ( )
( )( . ( ) )

( . ( ) ). ( )
( )( ). ( )

f x t t f x
df x t t t

t t t t t t
df x t t t

 

    

 

  

    

        

    

     

For a certain ( )t   such that ( ) 0t   when 0t   

(we used the linearity of 0( )df x ). By the definition, this 

means that the derivative of ( ( ))f x t  at 0t t  is exactly

0( )( )df x  . The statement of the theorem can be expressed 
by a simple formula: 

1
1

( ( )) ... (2)n
n

df x t f fx x
dt x x

 
  
 

  

 
To calculate the value Of df  at a point 0x  on a given vector 

  one can take an arbitrary curve passing Through 0x  at 0t  

with   as the velocity vector at 0t and calculate the usual 

derivative of ( ( ))f x t  at 0t t . 
 

Theorem 1.8.  For functions , :f g U  � , ,nU  �   

 
( ) (1)
( ) . . (2)

d f g df dg
d fg df g f dg

  
 

   

 
Proof. Consider an arbitrary point 0x  and an arbitrary vector 

  stretching from it. Let a curve ( )x t  be such that 

0 0( )x t x  and 0( )x t  .  

Hence 0( )( )( ) ( ( ( )) ( ( )))dd f g x f x t g x t
dt

     

at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))dd fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately follow from 
the corresponding formulae for the usual derivative Now, 
almost without change the theory generalizes to functions 
taking values in  m�  instead of � . The only difference is 
that now the differential of a map : mF U  �  at a point x  
will be a linear function taking vectors in n�  to vectors in 

m� (instead of � ) . For an arbitrary vector | ,nh �   
 

( ) ( ) ( )( )F x h F x dF x h     
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+ ( ) (3)h h   

Where ( ) 0h    when  0h  . We have  
1( ,..., )mdF dF dF  and  

1
1

1 1

11

1

...

....

... ... ... ... (4)

...

n
n

n

nm m

n

F FdF dx dx
x x

F F
dxx x

dxF F
x x

 
  
 

  
     

   
         

  

 
In this matrix notation we have to write vectors as vector-
columns. 

 
Theorem 1.9. For an arbitrary parametrized curve ( )x t  in 

n� , the differential of a   map : mF U  �  (where 
nU  � ) maps the velocity vector ( )x t  to the velocity 

vector of the curve ( ( ))F x t  in :m�   
.( ( )) ( ( ))( ( )) (1)dF x t dF x t x t

dt
     

 
Proof.  By the definition of the velocity vector, 

.
( ) ( ) ( ). ( ) (2)x t t x t x t t t t          

Where ( ) 0t    when 0t  . By the definition of the 
differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h      

Where ( ) 0h   when 0h  . we obtain  
.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 
For some ( ) 0t    when 0t  . This precisely means 

that 
.

( ) ( )dF x x t  is the velocity vector of ( )F x . As every 
vector attached to a point can be viewed as the velocity vector 
of some curve passing through this point, this theorem gives a 
clear geometric picture of dF  as a linear map on vectors. 

   
Theorem 1.10 Suppose we have two maps :F U V  and 

: ,G V W  where , ,n m pU V W  � � �  (open 

domains). Let : ( )F x y F x . Then the differential of 
the composite map :GoF U W  is the composition of the 
differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   
 

Proof.   We can use the description of the differential 

.Consider a curve ( )x t  in n�  with the velocity vector 
.
x . 

Basically, we need to know to which vector in  p� it is taken 
by ( )d GoF . the curve ( )( ( ) ( ( ( ))GoF x t G F x t . By the 
same theorem, it equals the image under dG  of the Anycast 
Flow vector to the curve ( ( ))F x t  in m� . Applying the 
theorem once again, we see that the velocity vector to the 

curve ( ( ))F x t is the image under dF of the vector 
.
( )x t . 

Hence 
. .

( )( ) ( ( ))d GoF x dG dF x   for an arbitrary vector 
.
x  . 

 
Corollary 1.0.    If we denote coordinates in n� by 

1( ,..., )nx x  and in m� by 1( ,..., )my y , and write 

1
1

1
1

... (1)

... , (2)

n
n

n
n

F FdF dx dx
x x
G GdG dy dy
y y

 
  
 
 

  
 

  

Then the chain rule can be expressed as follows: 
1

1( ) ... , (3)m
m

G Gd GoF dF dF
y y
 

  
 

  

Where idF  are taken from (1). In other words, to get 
( )d GoF  we have to substitute into (2) the expression for 

i idy dF  from (3). This can also be expressed by the 
following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F
dxy y x x

d GoF
dxG G F F

y y x x

     
                                  
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i.e., if dG  and dF  are expressed by matrices of partial 
derivatives, then ( )d GoF  is expressed by the product of 
these matrices. This is often written as  

 
1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z
y yx x

z z z z
x x y y

y y
x x

y y
x x

    
        
  
                

  
   
 
      

 

Or 

1
, (6)

im

a i a
i

z z y
x y x

 



  


     

Where it is assumed that the dependence of my�  on 
nx�  is given by the map F , the dependence of pz�  

on my�  is given by the map ,G  and the dependence of  
pz� on nx� is given by the composition GoF .  

 
Definition 1.6.  Consider an open domain nU  � . Consider 
also another copy of n� , denoted for distinction n

y� , with 

the standard coordinates 1( ... )ny y . A system of coordinates 

in the open domain U  is given by a map : ,F V U  

where n
yV  �  is an open domain of n

y� , such that the 
following three conditions are satisfied :  

(1) F  is smooth; 
(2) F  is invertible; 

(3) 1 :F U V   is also smooth 
 

The coordinates of a point x U  in this system are the 

standard coordinates of 1( ) n
yF x �  

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y   

Here the variables 1( ..., )ny y  are the “new” coordinates of 
the point x   

 

Example  1.2.     Consider a curve in 2�  specified in polar 
coordinates as  

( ) : ( ), ( ) (1)x t r r t t     
We can simply use the chain rule. The map ( )t x t  can be 
considered as the composition of the maps  

( ( ), ( )), ( , ) ( , )t r t t r x r    . Then, by the chain 
rule, we have  

. . .
(2)dx x dr x d x xx r

dt r dt dt r



 

   
    

   
   

Here 
.
r  and 

.
  are scalar coefficients depending on t , 

whence the partial derivatives ,x x
r 

 
    are vectors 

depending on point in 2� . We can compare this with the 

formula in the “standard” coordinates: 
. . .

1 2x e x e y  . 

Consider the vectors   ,x x
r 

 
  . Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x
r
x r r

 

 








 


  

From where it follows that these vectors make a basis at all 
points except for the origin (where 0r  ). It is instructive to 
sketch a picture, drawing vectors corresponding to a point as 

starting from that point. Notice that  ,x x
r 

 
   are, 

respectively, the velocity vectors for the curves ( , )r x r    

0( )fixed   and 0( , ) ( )x r r r fixed   . We can 
conclude that for an arbitrary curve given in polar coordinates 

the velocity vector will have components 
. .

( , )r   if as a basis 

we take : , : :r
x xe er  
      

. . .
(5)rx e r e      

A characteristic feature of the basis ,re e  is that it is not 
“constant” but depends on point. Vectors “stuck to points” 
when we consider curvilinear coordinates. 

 
Proposition  1.3.   The velocity vector has the same 
appearance in all coordinate systems. 
Proof.        Follows directly from the chain rule and the 
transformation law for the basis ie .In particular, the elements 

of the basis ii
xe x



 (originally, a formal notation) can be 

understood directly as the velocity vectors of the coordinate 
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lines 1( ,..., )i nx x x x   (all coordinates but ix  are fixed). 
Since we now know how to handle velocities in arbitrary 
coordinates, the best way to treat the differential of a map 

: n mF � �  is by its action on the velocity vectors. By 
definition, we set 

0 0 0
( ) ( ( ))( ) : ( ) ( ) (1)dx t dF x tdF x t t

dt dt
   

Now 0( )dF x  is a linear map that takes vectors attached to a 

point 0
nx �  to vectors attached to the point ( ) mF x �   

1
1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n
n

n

m
nm m

n

F FdF dx dx
x x

F F
dxx x

e e
dxF F

x x

 
  
 

  
     
  
         

  

In particular, for the differential of a function we always have  
1

1 ... , (3)n
n

f fdf dx dx
x x
 

  
 

  

Where ix  are arbitrary coordinates. The form of the 
differential does not change when we perform a change of 
coordinates. 

 
Example  1.3   Consider a 1-form in 2�  given in the 
standard coordinates: 

 
A ydx xdy     In the polar coordinates we will have 

cos , sinx r y r   , hence 
cos sin
sin cos

dx dr r d
dy dr r d

  
  

 
 

  

Substituting into A , we get 

2 2 2 2

sin (cos sin )
cos (sin cos )

(sin cos )

A r dr r d
r dr r d
r d r d

   
   

   

  
 

  

  

Hence  2A r d  is the formula for A  in the polar 
coordinates. In particular, we see that this is again a 1-form, a 
linear combination of the differentials of coordinates with 
functions as coefficients. Secondly, in a more conceptual way, 
we can define a 1-form in a domain U  as a linear function on 
vectors at every point of U : 

1
1( ) ... , (1)n

n         

If i
ie  , where ii

xe x



. Recall that the 

differentials of functions were defined as linear functions on 
vectors (at every point), and  

( ) (2)i i i
j jj

xdx e dx
x

    
    at every point 

x .  
 
Theorem  1.9.   For arbitrary 1-form   and path  , the 

integral 


  does not change if we change parametrization of 

  provide the orientation remains the same. 

Proof: Consider '( ( )), dxx t
dt

  and  '
'( ( ( ))), dxx t t

dt
  

As 

'
'( ( ( ))), dxx t t

dt
 = '

' '( ( ( ))), . ,dx dtx t t
dt dt

   

 
 
 
Let p  be a rational prime and let ( ).pK  �  We write   

for p  or this section. Recall that K  has degree 

( ) 1p p    over .�  We wish to show that  .KO  �  

Note that   is a root of 1,px   and thus is an algebraic 

integer; since K  is a ring we have that   .KO �  We 
give a proof without assuming unique factorization of ideals. 
We begin with some norm and trace computations. Let j  be 

an integer. If j is not divisible by ,p  then j  is a primitive 
thp  root of unity, and thus its conjugates are 2 1, ,..., .p     

Therefore 
 

2 1
/ ( ) ... ( ) 1 1j p

K pTr             �   

If p  does divide ,j  then 1,j   so it has only the one 

conjugate 1, and  / ( ) 1j
KTr p  �  By linearity of the 

trace, we find that  
2

/ /

1
/

(1 ) (1 ) ...

(1 )
K K

p
K

Tr Tr

Tr p

 

 

   

  
� �

�

 

We also need to compute the norm of 1  . For this, we use 
the factorization  

 
1 2

2 1

... 1 ( )

( )( )...( );

p p
p

p

x x x

x x x  

 



    

   
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Plugging in 1x   shows that  
 2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ), this shows 

that  / (1 )KN p �  The key result for determining the 

ring of integers KO  is the following. 
 
LEMMA 1.9 
  (1 ) KO p  � �   

Proof.  We saw above that p  is a multiple of (1 )  in 

,KO  so the inclusion (1 ) KO p  � �  is immediate.  
Suppose now that the inclusion is strict. Since 
(1 ) KO � is an ideal of �  containing p�  and p� is 

a maximal ideal of � , we must have  (1 ) KO  � �  
Thus we can write  1 (1 )     

For some .KO   That is, 1   is a unit in .KO   
 
COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p  � �   
PROOF.       We have  
 

/ 1 1

1 1 1 1

1
1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p
p

Tr        

       

     



 




     

    

    

�

 

Where the i  are the complex embeddings of K  (which we 
are really viewing as automorphisms of K ) with the usual 
ordering.  Furthermore, 1 j  is a multiple of 1   in KO  

for every 0.j   Thus 

/ ( (1 )) (1 )K KTr O    �  
Since the trace is also a 

rational integer. 
 
PROPOSITION 1.4  Let p  be a prime number and let 

| ( )pK  �  be the thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x  � �  Thus 21, ,..., p
p p    is an 

integral basis for KO . 

PROOF.    Let   KO   and write 
2

0 1 2... p
pa a a   
      With .ia �  Then 

 
2

0 1

2 1
2

(1 ) (1 ) ( ) ...

( )p p
p

a a
a

    

  


     

 
  

By the linearity of the trace and our above calculations we find 
that  / 0( (1 ))KTr pa  �  We also have  

/ ( (1 )) ,KTr p  � � so 0a �   Next consider the 
algebraic integer  

1 3
0 1 2 2( ) ... ;p

pa a a a    
      This is an 

algebraic integer since 1 1p    is. The same argument as 

above shows that 1 ,a �  and continuing in this way we find 

that all of the ia  are in � . This completes the proof. 
  
Example 1.4   Let K  � , then the local ring ( )p�  is simply 

the subring of �  of rational numbers with denominator 

relatively prime to p . Note that this ring   ( )p� is not the ring 

p� of p -adic integers; to get  p� one must complete ( )p� . 

The usefulness of ,K pO  comes from the fact that it has a 
particularly simple ideal structure. Let a be any proper ideal 
of ,K pO  and consider the ideal Ka O  of .KO  We claim 

that ,( ) ;K K pa a O O     That is, that a  is generated by the 

elements of a  in .Ka O  It is clear from the definition of an 

ideal that ,( ) .K K pa a O O   To prove the other inclusion, 

let   be any element of a . Then we can write /    

where KO   and .p   In particular, a   (since 

/ a    and a  is an ideal), so KO   and .p   so 

.Ka O    Since ,1/ ,K pO   this implies that 

,/ ( ) ,K K pa O O      as claimed. We can use this 

fact to determine all of the ideals of , .K pO  Let a  be any ideal 

of ,K pO and consider the ideal factorization of Ka O in 

.KO  write it as n
Ka O p b   For some n  and some ideal 

,b  relatively prime to .p  we claim first that , , .K p K pbO O  
We now find that 
  , , ,( ) n n

K K p K p K pa a O O p bO p O      Since , .K pbO  

Thus every ideal of ,K pO  has the form ,
n

K pp O  for some ;n  

it follows immediately that ,K pO is noetherian. It is also now 

clear that ,
n

K pp O is the unique non-zero prime ideal in ,K pO
. Furthermore, the inclusion , ,/K K p K pO O pO  Since 

, ,K p KpO O p   this map is also surjection, since the 

residue class of ,/ K pO    (with KO   and p  ) is 
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the image of 1   in / ,K pO  which makes sense since   is 

invertible in / .K pO  Thus the map is an isomorphism. In 
particular, it is now abundantly clear that every non-zero 
prime ideal of ,K pO is maximal.  To show that ,K pO is a 
Dedekind domain, it remains to show that it is integrally 
closed in K . So let K   be a root of a polynomial with 

coefficients in  , ;K pO  write this polynomial as  

11 0

1 0

...m mm

m

x x 
 





    With i KO   and .i K pO   

Set 0 1 1... .m      Multiplying by m  we find that   

is the root of a monic polynomial with coefficients in .KO  

Thus ;KO   since ,p   we have ,/ K pO   

. Thus  ,K pO is integrally close in .K   
 
COROLLARY 1.2.   Let K  be a number field of degree n  

and let   be in KO  then '
/ /( ) ( )K K KN O N � �   

PROOF.  We assume a bit more Galois theory than usual for 
this proof. Assume first that /K �  is Galois. Let   be an 
element of ( / ).Gal K �  It is clear that 

/( ) / ( ) ;K KO O      since ( ) ,K KO O   this shows 

that ' '
/ /( ( ) ) ( )K K K KN O N O  � � . Taking the product 

over all ( / ),Gal K  �  we have 
' '

/ / /( ( ) ) ( )n
K K K K KN N O N O � � �  Since / ( )KN �  is 

a rational integer and KO  is a free� -module of rank ,n    

// ( )K K KO N O�   Will have order / ( ) ;n
KN �  therefore 

 '
/ / /( ( ) ) ( )n

K K K K KN N O N O � � �  

This completes the proof.  In the general case, let L  be the 
Galois closure of K  and set [ : ] .L K m   
 
 

G. Determining Lower and Upper Bound 
We can draw the assumption that the conditional probability of 
P(B | A) is at least P(B), since the probability that a mechanism 
is cracked will not decrease under the condition that another 
one has been cracked. Usually however, the probability that a 
method is cracked is not independent from another method, 
especially when these two authentication methods are similar 
to each other. This means P(B | A) will be the higher, the more 
the occurrence of event A affects the occurrence of event B. 
The upper limit is one, which means that under the condition 
that mechanism A has been cracked, the probability that 
mechanism B is cracked is the certain event. In this case, the 

upper bound of the joint probability function P(A \ B) is 
reached. This bound is the minimum function of P(A) and 
P(B), which can be derived directly from equation 1. With 
regard to the authentication methods, this result can be 
illustrated as follows: The authentication method with the 
lowest probability is the strongest one, since we consider the 
event that an authentication method has been cracked. This 
means, that the probability that both authentication methods 
fail is lower or equal than the probability that the strongest 
mechanism fails. Or to put it in other words: The authentication 
is at least as strong as the strongest mechanism which is used in 
the combination, since an attacker has to go though all 
authentication mechanisms. If the methods are very similar to 
each other it is possible that theweaker mechanism does not 
contribute to the total security anymore, since the attacker 
already knows how to crack it. To summarize, the function that 
we are looking for to calculate the effect of combining two 
authentication mechanism, is defined between the upper and 
lower bounds  
 

H. Definition of Similarity Coefficients 
So far, we have determined the upper and lower bound of the 
joint probability function (cf. equation 3). Within these 
boundaries, the joint probability function P(A\B) can vary. As 
already mentioned, the parameter which decides about 
whether P(A \ B) is closer to the upper or to the lower bound 
is the similarity between two mechanisms. If we have a look at 
the equation for the joint probability function as shown again 
in equation 4, such a similarity parameter directly influences 
the value for the conditional probability function P(B | A), 
since P(A) is given. As we can see from equation 4, if P(A) = 
1, it depends completely on the second mechanism ˜B whether 
the combined authentication fails. The more secure the first 
mechanism is, which means the smaller P(A) is, the more 
should the failure of the first mechanism influence the second. 
Our idea is, that the similarity coefficient describes the 
maximum influence of the occurrence of event A on event B. 
This influence has its maximum when both probabilities P(A) 
and P(B) are very small. If both mechanisms are very 
strongwith a probability to fail of almost zero and one method 
gets still cracked, the probability that the second method is 
cracked as well raises to the value of the similarity coeeficient. 
Or to put it in other words: The value of the similarity 
coefficient corresponds to the probability that an almost 
unbreakable method is cracked under the condition that 
another almost unbreakable method has been cracked. If the 
similarity coefficient is zero, the event that method ˜ A is 
cracked does not effect the probability that method ˜B is 
cracked, which means that in this case P(B | A) = P(B). If the 
similarity coefficient is one, the event that method A˜ is 
cracked has a maximum influence on the occurrence of event 
B, which means that in this case P(B | A) is the upper bound. 
Our idea is that depending on the similarity coefficient, the 
conditional probability function is defined differently between 
the upper and the lower bound. We do not know the exact 
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curve of the function P(B | A), but the shown upper and lower 
bound of it. Therefore we approximate it by a function Ph(B | 
A) which lies in between both bounds. The parameter h can be 
used to adjust the approximation closer to either bound and 
corresponds to the similarity of the authentication 
mechanisms. In addition to the bounding constrains, P(B | A) 
and P(A | B) fulfill the symmetry expressed by equation 1. 
Therefore, this property should also hold for their 
approximation functions. It can easily be shown that the 
bounding and symmetry constrains are fulfilled by the 
definition of Ph(B | A) given below. Note, that any function 
fulfilling these constrains would be an appropriate 
approximation function for P(B | A). Based on this result and 
equation (1) and (2), we derive the following definition for the 
combined authentication trust level. 
 
Definition  1.2. Let A be the event, that the authentication 
method A˜ is cracked by an attacker and B the event, that 
method ˜B is cracked, P is the corresponding probability 
distribution. P(A) is the probability that the event A occurs, 
P(B) is the probability that the event B occurs. We define the 
combined authentication trust level of two authentication 
mechanisms ˜ A and ˜B as follows: The parameter h is a value 
in the range [0,1], which is called the similarity coefficient. 
Depending on the value of the similarity coefficient, the curve 
of the function to calculate the combined authentication trust 
level of two methods is steeper or flatter, which shows P(A\B) 
for different values of h. 

I. Determine the Similarity Coefficient 
The similarity coefficient expresses how much two 
mechanisms are correlated because of their similarity. The 
idea is that if two authentication mechanisms are combined, 
which are very similar, the combined authentication trust level 
should increase less than if with these two mechanism a two 
factor authentication is achieved. In order to determine the 
similarity coefficient many approaches are possible. Here, we 
suggest a simple approach, which is based on the assumption 
that using more than one factor is considered as a strong way 
of authentication as opposed to authentication processes which 
are only based on one factor. Table 1 shows an example 
configuration for the similarity coefficient. Three cases are 
considered: The authentication methods belong to different 
categories, to the same category or they are the same method 
with different parameters as, for example, two passwords with 
different length. An approach like this, which just 
distinguishes between these three cases should be sufficient 
for many application scenarios. However, more complex 
approaches are possible and desired, which calculate the 
similarity between two mechanisms more exactly by using, for 
example, a distance function between authentication methods 
and a mapping of this distance to the similarity coefficient.  

J. Calculating Trust Level  
In the category of knowledge-based authentication, we choose 
as the first authentication method a PIN as it is often used with 

banking cards. A PIN is described by the following 
parameters: minimum length, alphabet, number of false 
attempts and whether the PIN was chosen by the user or 
generated automatically. We assume having a PIN which is 
comprised of five digits and which has a maximum number of 
failed attempts of five until access is completely blocked. In 
order to determine the authentication trust level, we can use 
classical probability theory. If we have a PIN of length n 
comprising the digits from 0 to 9, the probability that someone 
can crack the PIN by guessing is 1 10n . However, this 
number is the probability that an attacker can guess the PIN in 
one attempt. We get the probability that a mechanism is not 
cracked after n attempts by multiplying the single probabilities 
for each attempt. Finally, we get the following formula for the 
probability P(X) that a PIN of a length of n digits is cracked 
after k attempts:  
 
The second knowledge-based example is an image-based 
authentication method called Passfaces [28]. Passfaces uses 
pictures of people, which the user has to recognize in order to 
authenticate. The parameters for this method are the total 
number of images and the number of faces which the user has 
to choose as his password. The formula for the calculation of 
the probability is the same as for the PIN, since the methods 
work the same way apart from the fact  that instead of digits 
from zero to nine, images of faces needs to be remembered by 
the user. We choose the following parameters:  
 
A is the event that the authentication has been cracked. Using 
the same formula as before the probability that the 
authentication with the Passfaces fails is :  
 
As a third authentication method, we choose a fingerprint 
reader, which belongs to the biometric authentication methods. 
For this method, we assume a false acceptance rate of 
0.00005, which leads to an authentication trust level of 
levelFP = −log(0.00005) = 5.3. If we have a look at 
performance studies like the“Fingerprint Vendor Technology 
Evaluation 2003” [20], we will find that this value is already 
far over the usual rates for the FAR. However, we have chosen 
this value to have a direct comparison between the 
combination of two knowledge-based methods and the 
combination of a knowledge-based method and the biometric 
method. 

K. Calculating the Combined Trust Level 
We want to calculate the authentication trust level for two 
combinations. The first one is the combination of the two 
knowledge-based mechanisms: the PIN with an authentication 
trust level f 4.3 and the Passfaces method with an 
authentication trust level of 5.3. After this, we want to show 
the effect of a two factor combination by combining the PIN 
with the biometric method, the fingerprint reader. Our 
calculation is based on the derived formula in  
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Definition  1.3 Regarding the first combination, the PIN with 
the Passfaces method, both mechanisms belong to the same 
category, namely what you know. As can be seen from Table 
1, the similarity coefficient of two methods which belong to 
the same category is 0.6. Given this and the two single 
authentication trust If we compare this result with the two 
single authentication levels 4.3 and 5.3 as shown in Definition 
3.2, we can see that the combined authentication is 
approximately 60% more secure than the Passfaces method 
alone. Now, we want to do the same calculation for the 
combination of the PIN with the fingerprint reader. This time, 
we have a two-factor authentication which leads to a similarity 
coefficient of 0.1 as can be seen from Table 1. The calculation 
is similar to the precious one, since in our example the 
fingerprint method is as secure as the Passfaces method to 
demonstrate the effect of the similarity coefficient. The 
calculation of the combined authentication trust level leads to 
the following result: 
 
If we compare this result with the one from the first example, 
we can see that the multi-factor authentication achieves a 
much higher combined authentication trust level even though 
the single authentication methods provide the same level of 
security. In the first example the combined authentication trust 
level is 5.5, while in the second example the level is 6.3, 
which is more than six times more secure than the first 
combination which was not a two-factor authentication and 
about ten times more secure than the fingerprint reader alone. 
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