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Abstract—Functionality and design of a bionic robot arm 
consisting of three joints driven by elastic and compliant 
actuators derived from biologically inspired principles are 
presented. In the first design standard springs with linear 
characteristics are utilized in combination with electrical drives. 
Different control approaches for the bionic robot arm are 
presented, discussed and evaluation in numerical simulations and 
experiments with regards to the long-term goal of a nature-like 
control performance.  
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I.  INTRODUCTION  
The challenge in the development of implantable 
microelectrodes is to achieve a complex, biocompatible and 
intelligent interface to neuronal structures. This includes 
devices for recording electrodes and electronics for signal pre-
processing. New technologies like nanostructuring of the 
electrodes and organic semiconducting materials as 
preprocessing electronic can improve the situation. For 
example, cuff electrodes for stimulation can include a 
multiplexer. The “Converging Technology” (defined as a 
synergetic combination of Nanotechnology, Biotechnology, 
Information technology and Cognitive sciences) includes the 
basic knowledge for the developing and manufacturing 
process. From this point of view, this paper will illuminate the 
technological problems. For medical application different 
kinds of electrodes are used. In case of neural prostheses and 
hybrid bionic systems implantable microelectrodes are 
necessary. Often the direct connection with neural structures 
of peripheral nervous system is required. Different clinical 
use, implantation methods, and neural structures need different 
designs. This paper describes some examples of fabrication 
methods and design for neural prosthetics and hybrid bionic 
systems.  
 

II. ELECTRODES 
For technical interactions with the neural system interfaces are 
needed. They transform the biological signals into technical 
signals. The basic components of these interfaces are 
electrodes. Electrodes transform the ion current of the 
biological system in to a current of electrons. Polymer-based 

thin film electrodes can generate more mechanical flexible 
solutions. New approaches include polymer electronics to 
flexible polymer substrate to achieve completely flexible 
implants [1]. 
 

A. Cuff electrodes 
 
One kind of circumneural electrode is the cuff electrode (see 
Fig. 1) placed around the peripheral nerve like an open tube. 
Thereby the electrodes are positioned inside the cuff to get in 
close contact to the nerve. This contraction has the 
disadvantage that the epineurium covering the nerve is 
between the electrode and the fibres. The perineurium works 
as a kind of insulator and thereby reduces the recording 
signals and increases stimulation thresholds. Multipolar cuff 
electrodes can be used for selective stimulation, such that the 
different fascicles of a nerve can be stimulated. A cuff 
electrode with one electrode ring each at the distal, proximal 
and central position of the tube is proposed for recording 
neural signals. This configuration allows suppression of 
external noise sources, such as line interface or bioelectrical 
muscle signals, by using the electrode in combination with a 
specific amplifier configuration. An alternative concept is a 
flat nerve electrode similar to the cuff but with a flat cross. By 
flattering the nerve, the fascicles are more separated. A more 
selective stimulation and recording is possible. This improves 
the selectivity. 
 

B. Cuff electrodes 
Shaft electrodes (see Fig. 2 have a needle shape with multiple 
electrode sides [3]. The concept is to insert these electrodes 
into the neural tissue. This results in a closer contact between 
the electrode side and the nerve fibres. The principal difficulty 
is the implantation method because of the mechanical stiffness 
of the peripheral nervous system. New concepts are under 
development to improve the stability and the penetration 
properties of this kind of electrodes. Additionally new 
implantation tools are required. 
 

C. Longitudinal intrafascicular electrodes 
A kind of intrafascicular electrode combines a loop of a thin 
wire electrode with a filament loop including a thin needle. 
This needle can be used as guidance to implant the thin film 
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electrode longitudinal into the nerve. Only the thin wire 
electrode will be left into the nerve [4]. Depending on the 
implantation of the electrode a high selectivity can be 
achieved. The restriction to a low number of electrode sites for 
longitudinal intrafascicular electrodes (see Fig. 3) can be 
solved by the use of polyimide substrates. The number of 
electrodes can be increased by the use of microstructuring 
technologies. Moreover, a reference electrode and ground 
electrodes is included on the substrate. 
 

D. Needle arrays 
As an alternative to the thin-film electrodes, micromachined 
electrodes based on silicon were used as needle arrays. Two 
main approaches are under development. The first is the use of 
a combination of sawing and etching, to structure a wafer from 
the normal direction [5]. The second approach is to structure a 
wafer in planar direction [6]. This method allows the 
combination of electrodes and electronics. Many electrodes 
can be placed on each needle. The disadvantage of this kind of 
electrodes is that the basic structure is only an arrangement of 
needles. To create an array, a batch is required. For the silicon 
electrode arrays, special implantation tools are needed to 
implant the arrays at high speed. 
 

E. Sieve electrodes 
The sieve electrode (see Fig. 4) will be placed between two 
cut ends of a nerve trunk [7]. As a guidance and fixation for 
the nerve, silicone tubes will be placed at both sides of the 
sieve [8, 9]. The nerve fibres then regenerate through the holes 
of the sieve electrode. Some of the holes are constructed with 
ring electrodes to contact the nerve fibres. Concerning the 
implantation method the applications for these electrodes are 
amputees and basic research [10]. Sieve electrodes are used to 
contact the fibres of regenerating nerves. By placing the 
microsieve in the regeneration pathway, the fibers regenerate 
through the different holes of the sieve electrode. Ring-shaped 
electrodes around the sieve holes can have a close contact to 
this regenerated fibres. In this case, a selective coupling of 
sensory and motor fibres is possible [11]. Thereby, selective 
stimulation and recording of neural bioelectrical potentials 
could be achieved. 
 

III. ELECTRODE MATERIALS  
The basic requirements for all components that have a direct 
interaction with the biological tissue are the biocompatibility 
of the used materials. Especially for electrodes the 
biocompatibility has to be investigated under stimulation as 
well as recording conditions. Electrode materials with stable 
electrochemical properties like electrochemical impedance and 
corrosion stability are needed. Common materials for 
implanted electrodes are platinum, platinum-iridium alloy, 
iridium, iridium-oxide, titanium-nitride and stainless steel. But 
also new materials like conductive polymers and electroplated 
platinum are under investigation. As insulation materials, 

biocompatible polymers like silicone, polyimide, PTFE, 
epoxies and parylene C are used as well as silicon nitride or 
glass. To have a flexible and robust connection between the 
electrode and a connector or a signal preprocessing 
electronics, cables consist of stainless steel or 
platinumiridium. Some of these wires have a spiral shape, to 
increase the flexibility of the material. As an alternative, 
polyimide-based ribbon cables can be used. 
 

IV. MICROFABRICATION METHODS  
Different kinds of microtechnology were used to fabricate 
electrodes for neuroprosthetics applications. The two mainly 
used technologies are the production of thinfilm structures and 
the use of silicon needles. Additionally, microtechnologies 
like microassembling encapsulation techniques are developed 
to upgrade the electrodes to active neural implants. Depending 
on the application, functional encapsulation and implantation 
tools were developed. Samples of electrodes that were 
fabricated with the technology described above are cuff, shaft, 
sieve, intrafascicular and needle electrodes [12]. 
 

A. Thin-film electrodes 
One method to fabricate microelectrodes is the use of 
lithography to structure thin-film polymers (see Fig. 5)[13]. 
As a first step, the polymer substrate is deposited on the 
surface of a smooth production carrier. One possibility is to 
use a silicon wafer as carrier. To achieve a constant thickness 
of the polymer spin coating or chemical vapour deposition 
could be used. For the structuring of the conductive parts the 
substrate is coated with a photosensitive layer. Every 2D 
shape can be created by lighting the photosensitive layer with 
a mask and develop.The next step is to deposit conductive 
materials as tracks to connect the electrodes to contact pads of 
the electrode by sputtering. By a lift of process, the rest of the 
photosensitive layer can be removed with the conductive 
material on it. This kind of process can be repeated to add 
electrode or contact pads layers. To encapsulate the 
conductive parts an additional layer of the polymer will be 
placed on the top. Openings for the electrode and the electrode 
and the connection pads can be achieved by reactive ion 
etching, masked by an aluminium layer. Finally the structure 
has to be mechanically separated from the wafer [14]. As an 
additional optional step, the structures can be tempered in 3D 
shape or combined with silicone parts. 
 

B. Silicon electrodes 
The use of silicon microtechnology is another method to 
fabricate microimplants. On the one hand, this technology is 
more restricted in the possibility of 3D forming, e.g. for cuff 
electrodes. On the other hand, the stiffness of the material 
allows the construction of needle-shaped electrodes to 
penetrate nervous tissue. One example is a silicon needle array 
to record or stimulate nervous tissue [15].To create the needle 
array, an n-doped silicon wafer was used as the base material. 
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Trails of p+ material were produced by masked diffusion of 
aluminium atoms by thermomigration, which works based on 
a temperature gradient between the different sides of the 
wafer. These trails were used as electrodes. The insulation 
between the electrodes was achieved by the resulting back-to-
back pn junction, which was formed between pairs of p+ 
trails. The 3D shape of the electrodes was produced by cross 
shape sawing of the wafer between the p+ trails, such that only 
a thin layer of n-type silicon surrounds the electrodes. As a 
result of the sawing, rectangular structures were created. To 
thin the electrodes and sharpen them, chemical etching 
processes were used. The tips of the needles were coated with 
platinum, and the electrodes were connected with insulated 
gold wires on the backside. Finally, the electrode except the 
platinum tips was insulated with polyimide. 
 

C. Electronic assembly 
For more complex approaches electronics have to be placed 
directly at the electrode. To reduce the size of the system die-
ICs should be used. To connect these electronics to a flexible 
thin-film structure a special bonding technique was developed 
[16]. Using a standard method a gold bond can be placed 
through a hole of the thin film on the contact pad of the IC. On 
the side of the gold ball, the thin-film electrode needs a ring 
contact around the hole. By this method a mechanical as well 
as an electrical contact between electrode and IC can be 
achieved. Additional components like capacitors or resistors 
can be placed in a similar way or can be glued by conductive 
epoxy or soldered to pads of the flexible substrate.  
 

D. Encapsulation 
Additional encapsulation is needed to avoid a shortcut 
between the contact pads and the electronics. This 
encapsulation also protects the conductive parts from 
corrosion. One major problem of flexible encapsulation is the 
long-term stability of the insulation properties. Especially the 
interface between the substrate and the encapsulation material 
is a critical point. To define the quality of a flexible implant 
encapsulation, standardized methods are still missing. One 
approach is to use finger structures on a substrate and measure 
the leakage current in physiological environment over a long 
time period. Many methods of accelerated aging are proposed, 
but so far, no general method for multilayer structures is 
available. One promising method for encapsulation is the use 
of Parylene-C, which combines a good biocompatibility with 
good electrical and barrier properties [17, 18]. 
We consider the following anycast field equations defined 
over an open bounded piece of network and /or feature space 

dR . They describe the dynamics of the mean of each of 
p node populations. 
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We give an interpretation of the various parameters and 
functions that appear in (1),  is finite piece of nodes and/or 
feature space and is represented as an open bounded set of 

dR . The vector r  and r  represent points in   . The 
function : (0,1)S R   is the normalized sigmoid function: 

  
1( ) (2)

1 zS z
e


  

It describes the relation between the input rate iv  of 
population i  as a function of the packets potential, for 
example, [ ( )].i i i i iV v S V h    We note V  the p   

dimensional vector 1( ,..., ).pV V The p  function 

, 1,..., ,i i p   represent the initial conditions, see below. We 

note   the  p   dimensional vector 1( ,..., ).p   The p  

function , 1,..., ,ext
iI i p  represent external factors from 

other network areas. We note extI  the p   dimensional 

vector 1( ,..., ).ext ext
pI I The p p  matrix of functions 

, 1,...,{ }ij i j pJ J   represents the connectivity between 

populations i  and ,j  see below. The p  real values 

, 1,..., ,ih i p  determine the threshold of activity for each 
population, that is, the value of the nodes potential 
corresponding to 50% of the maximal activity. The p real 

positive values , 1,..., ,i i p   determine the slopes of the 
sigmoids at the origin. Finally the p real positive values 

, 1,..., ,il i p   determine the speed at which each anycast 
node potential decreases exponentially toward its real value. 
We also introduce the function : ,p pS R R  defined by 

1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     and the 

diagonal p p  matrix 0 1( ,..., ).pL diag l l Is the intrinsic 
dynamics of the population given by the linear response of 

data transfer. ( )i
d l
dt
  is replaced by 2( )i

d l
dt
  to use the 

alpha function response. We use ( )i
d l
dt
  for simplicity 

although our analysis applies to more general intrinsic 
dynamics. For the sake, of generality, the propagation delays 
are not assumed to be identical for all populations, hence they 

are described by a matrix ( , )r r  whose element ( , )ij r r is 

the propagation delay between population j  at r  and 
population i  at .r  The reason for this assumption is that it is 
still unclear from anycast if propagation delays are 
independent of the populations. We assume for technical 
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reasons that   is continuous, that is 
20 ( , ).p pC R 

   
Moreover packet data indicate that   is not a symmetric 

function i.e., ( , ) ( , ),ij ijr r r r   thus no assumption is 
made about this symmetry unless otherwise stated. In order to 
compute the righthand side of (1), we need to know the node 
potential factor V  on interval [ ,0].T  The value of T  is 
obtained by considering the maximal delay: 

 ,, ( , )
max ( , ) (3)m i ji j r r

r r 


   

Hence we choose mT   
 

E. Mathematical Framework 
A convenient functional setting for the non-delayed packet 
field equations is to use the space 2 ( , )pF L R   which is a 
Hilbert space [1-7] endowed with the usual inner product: 

 
1

, ( ) ( ) (1)
p
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



   

To give a meaning to (1), we defined the history space 
0 ([ , 0], )mC C F   with [ ,0]sup ( ) ,

mt t F    
which is the Banach phase space[14-20] associated with 
equation (3). Using the notation 

( ) ( ), [ ,0],t mV V t        we write (1) as  
.
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


   

  

Is the linear continuous operator[21-28]  satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the papers on this 

subject assume   infinite, hence requiring .m      
 
 
Proposition 1.0  If the following assumptions are satisfied. 

1. 2 2( , ),p pJ L R     

2. The external current 0 ( , ),extI C R F   

3. 2

0 2( , ),sup .p p
mC R  

 
     

Then for any ,C  there exists a unique solution 
1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  finite-time 
explosion[29 - 35]  is impossible for this delayed differential 

equation[36-47]. Nevertheless, a particular solution could 
grow indefinitely, we now prove that this cannot happen. 
 

F. Boundedness of Solutions 
A valid model of neural networks should only feature bounded 
packet node potentials.  
 
Theorem 1.0 All the trajectories are ultimately bounded by 

the same constant R  if max ( ) .ext
t R F

I I t
     

Proof :Let us defined :f R C R   as 
2

0 1
1( , ) (0) ( ) ( ), ( )
2

def
ext F

t t t F

d V
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dt
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We note 1,...min i p il l   
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Thus,  if 
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2

def def
F

tF

p J I lRV t R f t V
l


 
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Let us show that the open route of F  of center 0 and radius 

, ,RR B  is stable under the dynamics of equation. We know 

that ( )V t  is defined for all 0t s  and that 0f   on ,RB  

the boundary of RB . We consider three cases for the initial 

condition 0.V If 0 C
V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose that ,T R  

then ( )V T  is defined and belongs to ,RB  the closure of ,RB  

because  RB is closed, in effect to ,RB  we also have 

2 | ( , ) 0t T TF

d V f T V
dt

      because ( ) .RV T B  

Thus we deduce that for 0   and small enough, 

( ) RV T B   which contradicts the definition of T. Thus 

T R  and RB is stable.  Because f<0 on , (0)R RB V B   

implies that 0, ( ) Rt V t B   . Finally we consider the case 

(0) RV CB . Suppose that   0, ( ) ,Rt V t B    then 

20, 2 ,
F

dt V
dt

     thus ( )
F

V t  is monotonically 

decreasing and reaches the value of R in finite time when 
( )V t  reaches .RB  This contradicts our assumption.  Thus  

0 | ( ) .RT V T B     
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Proposition 1.1 : Let s  and t   be measured simple functions 

on .X  for ,E M  define 
 

( ) (1)
E

E s d     
Then   is a measure on M .  

( ) (2)
X X X

s t d s d td         
Proof : If s  and if 1 2, ,...E E  are disjoint members of M
whose union is ,E  the countable additivity of   shows that  

1 1 1

1 1 1

( ) ( ) ( )
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i i r r
r i r

E A E A E
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   

  

  

 
  

Also, ( ) 0,    so that   is not identically . 
Next, let  s  be as before, let 1,..., m   be the distinct values 

of  t,and let { : ( ) }j jB x t x    If ,ij i jE A B   the

( ) ( ) ( )
ij

i j ijE
s t d E        

and ( ) ( )
ij ij

i ij j ijE E
sd td E E           Thus (2) 

holds with ijE  in place of X . Since  X is the disjoint union 

of the sets (1 ,1 ),ijE i n j m     the first half of our 
proposition implies that (2) holds. 
 
 
Theorem 1.1: If K  is a compact set in the plane[6] whose 
complement is connected, if f  is a continuous complex 
function[48-52] on K  which is holomorphic[53-61] in the 
interior of , and if 0,   then there exists a polynomial P  

such that ( ) ( )f z P z    for all z K .  If the 

interior of K is empty, then part of the hypothesis is 
vacuously satisfied, and the conclusion holds for every 

( )f C K . Note that  K need to be connected. 
Proof: By Tietze’s theorem[62-70], f  can be extended to a 
continuous function in the plane[6], with compact support. We 
fix one such extension and denote it again by f . For any 

0,   let ( )   be the supremum[71-90] of the numbers 

2 1( ) ( )f z f z  Where 1z  and 2z  are subject to the 

condition 2 1z z   . Since f  is uniformly continous, we 

have 
0

lim ( ) 0 (1)


 


  From now on,   will be 

fixed. We shall prove that there is a polynomial P  such that  
  

 ( ) ( ) 10,000 ( ) ( ) (2)f z P z z K      
By (1),   this proves the theorem. Our first objective is the 
construction of a function ' 2( ),cC R  such that for all z   

( ) ( ) ( ), (3)
2 ( )( )( ) , (4)

f z z

z

 

 


 

 
  

And 
1 ( )( )( ) ( ), (5)
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z d d i
z


    
 


   

   

Where X  is the set of all points in the support of   whose 
distance from the complement of K  does not  . (Thus  X
contains no point which is “far within” K .) We construct 
as the convolution[91-101] of f  with a smoothing function 
A. Put ( ) 0a r   if ,r  put  
 

2
2

2 2

3( ) (1 ) (0 ), (6)ra r r 
 
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And define 
( ) ( ) (7)A z a z

  
For all complex z . It is clear that ' 2( )cA C R . We claim that  

2

3

1, (8)

0, (9)

24 2 , (10)
15

sR

R
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A

A
 



 
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





    

 
The constants are so adjusted in (6) that (8) holds.  (Compute 
the integral in polar coordinates), (9) holds simply because A  
has compact support. To compute (10), express A  in polar 

coordinates, and note that 0,A


    

 
',A ar

    
Now define 

2 2

( ) ( ) ( ) ( ) (11)
R R

z f z Ad d A z f d d           
  

Since f  and A  have compact support, so does  . Since  
 

2

( ) ( )

[ ( ) ( )] ( ) (12)
R

z f z

f z f z A d d   

 

    

And ( ) 0A    if ,    (3) follows from (8). The 

difference quotients[102-110]  of A  converge boundedly to 
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the corresponding partial derivatives[111-120], since 
' 2( )cA C R . Hence the last expression in (11) may be 

differentiated under the integral sign, and we obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

The last equality depends on (9). Now (10) and (13) give (4). 
If we write (13) with x  and y  in place of ,  we see 

that   has continuous partial derivatives[121-130][111-120], 
if we can show that 0   in ,G  where G  is the set of all 
z K  whose distance from the complement of K  exceeds .  
We shall do this by showing that  
 ( ) ( ) ( ); (14)z f z z G    
Note that 0f   in G , since f  is holomorphic[53-61] 
there. Now if ,z G  then z   is in the interior of K  for all 

  with .   The mean value property for harmonic 
functions[1]  therefore gives, by the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

  







  

  

 
 

  

For all z G  , we have now proved (3), (4), and (5) The 
definition of X  shows that X is compact and that X  can be 
covered by finitely many open discs 1,..., ,nD D  of radius 

2 ,  whose centers are not in .K  Since 2S K  is 

connected, the center of each jD  can be joined to   by a 

polygonal path in 2S K . It follows that each jD contains a 

compact connected set ,jE  of diameter at least 2 ,  so that 
2

jS E  is connected and so that .jK E     with 

2r  . There are functions 2( )j jg H S E   and constants 

jb  so that the inequalities[3]. 
 

2

2

50( , ) , (16)

1 4,000( , ) (17)

j

j

Q z

Q z
z z





 



 
 

   

Hold for jz E  and ,jD   if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then  is an 

open set which contains .K  Put 1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 2 ,j n    
Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z       
And 

1( ) ( ) ( ) ( , ) ( 2 0 )

( )
X

F z R z d d

z

   



 



   

Since,  

1

1( ) ( )( ) ( , ) , (21)
i

j
j X

F z Q z d d   


     

(18) shows that F  is a finite linear combination [7] of the 
functions jg  and 2

jg . Hence ( ).F H   By (20), (4), and 
(5) we have  

2 ( )( ) ( ) | ( , )

1 | ( ) (22)

X

F z z R z

d d z
z

  


  


 

 



  

Observe that the inequalities[3] (16) and (17) are valid with 
R  in place of jQ  if X   and .z   Now fix  .z   , 

put ,iz e     and estimate the integrand[10] in (22) by 
(16) if 4 ,   by (17) if 4 .    The integral in (22) is 
then seen to be less than the sum of 

4

0

50 12 808 (23)d


   
 

 
  

 
   

And  
2

24

4,0002 2,000 . (24)d


   



   

Hence (22) yields 
( ) ( ) 6,000 ( ) ( ) (25)F z z z       

Since ( ), ,F H K    and 2S K  is connected, 
Runge’s theorem [20] shows that F  can be uniformly 
approximated on K  by polynomials[30]. Hence (3) and (25) 
show that (2) can be satisfied. This completes the proof. 
 
Lemma 1.0 : Suppose ' 2( ),cf C R  the space of all 
continuously differentiable functions[5] in the plane[6], with 
compact support. Put  
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1 (1)
2

i
x y

  
     

  

Then the following “Cauchy[8] formula” holds: 

2

1 ( )( )( )

( ) (2)
R

ff z d d
z

i

  
 

  


 



 

   

Proof: This may be deduced from Green’s[11] theorem. 
However, here is a simple direct proof: 
Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1( )( ) ( , ) (3)
2

i if e r
r r

  


       
  

The right side of (2) is therefore equal to the limit, as 0,   
of 

 
2

0

1 (4)
2

i d dr
r r





 



        

 
 

 
 
For each 0,r   is periodic in ,  with period 2 . The 
integral of /    is therefore 0, and (4) becomes 

2 2

0 0

1 1 ( , ) (5)
2 2

d dr d
r

 



    
 

 
 

     

As 0, ( , ) ( )f z      uniformly.  This gives (2)  
 
If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the condition ( ) . 
Conversely, 

,
( )( ) ( ),

nA
c X d X c d X finitesums   
   

  



 

  
�

  

and so if A  satisfies ( ) , then the subspace generated by the 

monomial[14]s ,X a  , is an ideal. The proposition 
gives a classification of the monomial[14] ideals in 

 1,... nk X X : they are in one to one correspondence with the 

subsets A  of n�  satisfying ( ) . For example, the 

monomial[14] ideals in  k X  are exactly the ideals 

( ), 1nX n  , and the zero ideal (corresponding to the empty 

set A ). We write |X A    for the ideal corresponding 

to A  (subspace generated by the ,X a  ). 
 

LEMMA 1.1.  Let S  be a subset of n� . The the ideal a  

generated by ,X S   is the monomial[14] ideal 
corresponding to   

 | ,
df

n nA some S       � �   

Thus, a monomial[14] is in a  if and only if it is divisible by 

one of the , |X S   

PROOF.   Clearly A  satisfies   , and |a X A   . 

Conversely, if A , then n  �  for some S  , 

and X X X a     . The last statement follows from 

the fact that | nX X     � . Let nA �  

satisfy   . From the geometry[17] of  A , it is clear that 

there is a finite set of elements  1,... sS     of A such 

that   2| ,n
i iA some S       � �  (The 

'i s  are the corners of A ) Moreover, |
df

a X A   is 

generated by the monomial[14]s ,i
iX S   . 

 
DEFINITION 1.0.   For a nonzero ideal a  in  1 ,..., nk X X
, we let ( ( ))LT a  be the ideal generated by  

 ( ) |LT f f a   
 
LEMMA 1.2   Let a  be a nonzero ideal in   1 ,..., nk X X ; 

then ( ( ))LT a is a monomial[14] ideal, and it equals 

1( ( ),..., ( ))nLT g LT g  for some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as the ideal 
generated by the leading monomial[14]s (rather than the 
leading terms) of elements of a . 
 
THEOREM 1.2.  Every ideal a  in  1 ,..., nk X X is finitely 

generated; more precisely, 1( ,..., )sa g g  where 1,..., sg g
are any elements of a  whose leading terms generate ( )LT a   
PROOF.   Let f a . On applying the division 
algorithm[22], we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X      , 

where either 0r   or no monomial[14] occurring in it is 
divisible by any ( )iLT g . But i i

r f a g a   , and 

therefore 1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , 
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implies that every monomial[14] occurring in r  is divisible 
by one in ( )iLT g . Thus 0r  , and 1( ,..., )sg g g . 
 
DEFINITION 1.1.   A finite subset  1,| ..., sS g g  of an 

ideal a  is a standard (
..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, S is a 
standard basis if the leading term of every element of a is 
divisible by at least one of the leading terms of the ig . 
 
THEOREM 1.3  The ring 1[ ,..., ]nk X X  is Noetherian i.e., 
every ideal is finitely generated. 
 
PROOF. For  1,n   [ ]k X  is a principal ideal domain, 
which means that every ideal is generated by single element. 
We shall prove the theorem by induction on n . Note that the 
obvious map 1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every polynomial f  in 

n  variables 1,... nX X  can be expressed uniquely as a 

polynomial in nX  with coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r
n n n r nf X X a X X X a X X      

Thus the next lemma will complete the proof 
 
LEMMA 1.3.  If A  is Noetherian, then so also is [ ]A X   
PROOF.          For a polynomial 
 

1
0 1 0( ) ... , , 0,r r

r if X a X a X a a A a        

r  is called the degree of f , and 0a  is its leading coefficient. 
We call 0 the leading coefficient of the polynomial 0. 
 Let a  be an ideal in [ ]A X . The leading coefficients 

of the polynomials[30] in a  form an ideal 'a  in A ,  and 
since A  is Noetherian, 'a will be finitely generated. Let 

1,..., mg g  be elements of a  whose leading coefficients 

generate 'a , and let r be the maximum degree of ig . Now 

let ,f a  and suppose f  has degree s r , say, 

...sf aX   Then 'a a  , and so we can write 

, ,i ii

i i

a ba b A

a leading coefficient of g

 




  

Now 

, deg( ),is r
i i i if b g X r g

  has degree deg( )f  . 
By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a polynomial of 

degree t r . For each d r , let da  be the subset of A  
consisting of 0 and the leading coefficients of all 
polynomials[30] in a  of degree ;d  it is again an ideal in  A . 

Let ,1 ,,...,
dd d mg g  be polynomials[30] of degree d  whose 

leading coefficients generate da . Then the same argument as 

above shows that any polynomial df  in a  of degree d  can 

be written 1 ,1 ,mod( ,... )
dd d d d mf f g g  With 1df   

of degree 1d  . On applying this remark repeatedly we 
find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

       
1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )

rt m r r m mf g g g g g g
   

 and so the polynomials[30] 
01 0,,..., mg g  generate a   

 
One of the great successes of category theory in computer 
science has been the development of a “unified theory” of the 
constructions underlying denotational semantics. In the 
untyped  -calculus,  any term may appear in the function 
position of an application. This means that a model D of the 
 -calculus must have the property that given a term t  whose 
interpretation is ,d D  Also, the interpretation of a 
functional abstraction like x . x  is most conveniently 
defined as a function from Dto D  , which must then be 

regarded as an element of D. Let  : D D D    be the 
function that picks out elements of D to  represent elements of 

 D D  and  : D D D    be the function that 

maps elements of D to functions of D.  Since ( )f  is 
intended to represent the function f  as an element of D, it 
makes sense to require that ( ( )) ,f f    that is, 

 D Do id     Furthermore, we often want to view every 

element of D as representing some function from D to D and 
require that elements representing the same function be equal 
– that is   

( ( ))

D

d d
or

o id

 

 




  

The latter condition is called extensionality. These conditions 
together imply that and   are inverses--- that is, D is 
isomorphic to the space of functions from D to D  that can be 
the interpretations of functional abstractions:  D D D   
.Let us suppose we are working with the untyped 

calculus  , we need a solution ot the equation 

 ,D A D D    where A is some predetermined 
domain containing interpretations for elements of C.  Each 

lalitha
Text Box
International Journal of P2P Network Trends and Technology (IJPTT) - Volume 2 Issue 6 November to December 2012


lalitha
Text Box
ISSN: 2249-2615                                    http://www.ijpttjournal.org                                     Page 8



International Journal of P2P Network Trends and Technology- Volume2Issue6- 2012 
 

ISSN: 2249-2615 http://www.internationaljournalssrg.org Page 79 
 

element of D corresponds to either an element of A or an 
element of  ,D D  with a tag. This equation can be 
solved by finding least fixed points of the function 

 ( )F X A X X    from domains to domains --- that 

is, finding domains X  such that   ,X A X X    and 
such that for any domain Y also satisfying this equation, there 
is an embedding of X to Y  --- a pair of maps 

R

f

f

X Y�   

Such that   
R

X
R

Y

f o f id
f o f id




  

Where f g  means that f approximates g  in some 
ordering representing their information content. The key shift 
of perspective from the domain-theoretic to the more general 
category-theoretic approach lies in considering F not as a 
function on domains, but as a functor on a category of 
domains. Instead of a least fixed point of the function, F. 
 
Definition 1.3: Let K be a category and :F K K  as a 
functor. A fixed point of F is a pair (A,a), where A is a K-
object and : ( )a F A A  is an isomorphism. A prefixed 
point of F is a pair (A,a), where A is a K-object and a is any 
arrow from F(A) to A 
Definition 1.4 : An chain   in a category K  is a diagram 
of the following form: 

1 2

1 2 .....
of f f

oD D D       
Recall that a cocone   of an chain    is a K-object X 

and a collection of K –arrows  : | 0i iD X i    such 

that 1i i io f    for all 0i  . We sometimes write 

: X   as a reminder of the arrangement of ' s  

components Similarly, a colimit : X  is a cocone with 

the property that if ': X   is also a cocone then there 
exists a unique mediating arrow ':k X X  such that for all 

0,, i ii v k o  . Colimits of chains   are sometimes 

referred to as limco its  . Dually, an op chain   in K 
is a diagram of the following form: 

1 2

1 2 .....
of f f

oD D D    
 
A cone : X   of an 

op chain    is a K-object X and a collection of K-arrows 

 : | 0i iD i   such that for all 10, i i ii f o    . An  
op -limit of an op chain     is a cone : X   

with the property that if ': X  is also a cone, then there 
exists a unique mediating arrow ':k X X  such that for 
all 0, i ii o k    . We write k  (or just  ) for the 
distinguish initial object of K, when it has one, and A  
for the unique arrow from   to each K-object A. It is also 

convenient to write 
1 2

1 2 .....
f f

D D    to denote all of 

  except oD  and 0f . By analogy,    is  | 1i i  . For 

the images of   and   under F we write  
1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write iF  for the i-fold iterated composition of F – that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f    ,etc. 

With these definitions we can state that every monitonic 
function on a complete lattice has a least fixed point: 
 
Lemma 1.4. Let K  be a category with initial object   and let 

:F K K  be a functor. Define the chain    by 
2! ( ) (! ( )) (! ( ))

2( ) ( ) .........
F F F F F

F F
     

        

If both : D   and ( ) : ( ) ( )F F F D   are 
colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D   is the mediating arrow from ( )F    to the 

cocone  

  
 
 
Theorem 1.4 Let a DAG G given in which each node is a 
random variable, and let a discrete conditional probability 
distribution of each node given values of its parents in G be 
specified. Then the product of these conditional distributions 
yields a joint probability distribution P of the variables, and 
(G,P) satisfies the Markov condition. 
 
Proof. Order the nodes according to an ancestral ordering. Let 

1 2, ,........ nX X X be the resultant ordering. Next define.  
 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...
.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa
P x pa P x pa

 
 

Where iPA is the set of parents of iX of in G and 

( | )i iP x pa is the specified conditional probability 
distribution. First we show this does indeed yield a joint 
probability distribution. Clearly, 1 20 ( , ,... ) 1nP x x x   for 
all values of the variables. Therefore, to show we have a joint 
distribution, as the variables range through all their possible 
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values, is equal to one. To that end, Specified conditional 
distributions are the conditional distributions they notationally 
represent in the joint distribution. Finally, we show the 
Markov condition is satisfied. To do this, we need show for 
1 k n   that  

whenever 

( ) 0, ( | ) 0
( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa
and P x pa

then P x nd pa P x pa

 




 

Where kND is the set of nondescendents of kX of in G. Since 

k kPA ND , we need only show 

( | ) ( | )k k k kP x nd P x pa . First for a given k , order the 

nodes so that all and only nondescendents of kX precede kX
in the ordering. Note that this ordering depends on k , whereas 
the ordering in the first part of the proof does not. Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X
Let
D X X X



 





 

follows 
kd    

 
 
We define the thm cyclotomic field to be the field 

  / ( ( ))mQ x x
 
Where ( )m x is the thm cyclotomic 

polynomial.   / ( ( ))mQ x x  ( )m x  has degree ( )m

over Q since ( )m x has degree ( )m . The roots of 

( )m x  are just the primitive thm roots of unity, so the 

complex embeddings of   / ( ( ))mQ x x are simply the 

( )m maps  

 : / ( ( )) ,
1 , ( , ) 1,

( ) ,

k m

k
k m

Q x x C
k m k m where

x



 



 





  

m being our fixed choice of primitive thm root of unity. Note 

that ( )k
m mQ  for every ;k it follows that 

( ) ( )k
m mQ Q  for all k relatively prime to m . In 

particular, the images of the i coincide, so 

  / ( ( ))mQ x x is Galois over Q . This means that we can 

write ( )mQ  for   / ( ( ))mQ x x without much fear of 
ambiguity; we will do so from now on, the identification being 

.m x  One advantage of this is that one can easily talk 

about cyclotomic fields being extensions of one another,or 
intersections or compositums; all of these things take place 
considering them as subfield of .C  We now investigate some 
basic properties of cyclotomic fields. The first issue is whether 
or not they are all distinct; to determine this, we need to know 
which roots of unity lie in ( )mQ  .Note, for example, that if 

m is odd, then m is a 2 thm root of unity. We will show that 

this is the only way in which one can obtain any non- thm
roots of unity. 
 
LEMMA 1.5   If m divides n , then ( )mQ   is contained in 

( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ  so the 

result is clear 
 
LEMMA 1.6   If m and n are relatively prime, then  
  ( , ) ( )m n nmQ Q    
and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   
 

PROOF. One checks easily that m n  is a primitive thmn root 
of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :
( ) ( ) ( );

m n m nQ Q Q Q Q Q
m n mn
   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q    We know that ( , )m nQ   has degree 

( )mn  over  Q , so we must have  

  ( , ) : ( ) ( )m n mQ Q n     
and 

 ( , ) : ( ) ( )m n mQ Q m     
 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    
 

PROPOSITION 1.2 For any m and n  
 

 ,( , ) ( )m n m nQ Q    

And  
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( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common multiple and 
the greatest common divisor of m and ,n respectively. 

 
PROOF.    Write 1 1

1 1...... ....k ke fe f
k km p p and p p where the 

ip are distinct primes. (We allow i ie or f to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and
Q Q Q Q

Thus
Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 
An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 
Mutual information measures the information transferred 
when ix  is sent and iy  is received, and is defined as 

2

( )
( , ) log (1)

( )

i

i
i i

i

xP yI x y bits
P x

  

In a noise-free channel, each iy is uniquely connected to the 

corresponding ix  , and so they constitute an input –output pair 

( , )i ix y  for which 

 2
1( ) 1 ( , ) log
( )

i
i j

j i

xP and I x yy P x
  bits; that is, the 

transferred information is equal to the self-information that 
corresponds to the input ix  In a very noisy channel, the output 

iy and input ix would be completely uncorrelated, and so 

( ) ( )i
i

j

xP P xy   and also ( , ) 0;i jI x y  that is, there is no 

transference of information. In general, a given channel will 
operate between these two extremes. The mutual information 
is defined between the input and the output of a given channel. 
An average of the calculation of the mutual information for all 
input-output pairs of a given channel is the average mutual 
information: 

2
. .

(
( , ) ( , ) ( , ) ( , ) log

( )

i

j
i j i j i j

i j i j i

xP y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 
 bits per 

symbol . This calculation is done over the input and output 
alphabets. The average mutual information. The following 
expressions are useful for modifying the mutual information 
expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yxP x y P P y P P xy x
yP y P P xx

xP x P P yy

 









 

Then 

.

2
.

2
.

2
.

2

2

( , ) ( , )

1( , ) log
( )

1( , ) log
( )

1( , ) log
( )

1( ) ( ) log
( )

1( ) log ( )
( )

( , ) ( ) ( )

i j
i j

i j
i j i

i j
ii j

j

i j
i j i

i
j

ji i

i
i i

I X Y P x y

P x y
P x

P x y xP y

P x y
P x

xP P yy P x

P x H X
P x

XI X Y H X H Y



 
  

 
 
 

  
 
 

 
 
 

    



 













 

Where 2,

1( ) ( , ) log
( )

i ji j
i

j

XH P x yY xP y

  is 

usually called the equivocation. In a sense, the equivocation 
can be seen as the information lost in the noisy channel, and is 
a function of the backward conditional probability. The 
observation of an output symbol jy provides 

( ) ( )XH X H Y  bits of information. This difference is the 

mutual information of the channel. Mutual Information: 
Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yxP P y P P xy x  
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The mutual information fits the condition 
( , ) ( , )I X Y I Y X  

And by interchanging input and output it is also true that 

( , ) ( ) ( )YI X Y H Y H X   

Where 

2
1( ) ( ) log
( )j

j j

H Y P y
P y

  

This last entropy is usually called the noise entropy. Thus, the 
information transferred through the channel is the difference 
between the output entropy and the noise entropy. 
Alternatively, it can be said that the channel mutual 
information is the difference between the number of bits 
needed for determining a given input symbol before knowing 
the corresponding output symbol, and the number of bits 
needed for determining a given input symbol after knowing 
the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H Y   

As the channel mutual information expression is a difference 
between two quantities, it seems that this parameter can adopt 
negative values. However, and is spite of the fact that for some 

, ( / )j jy H X y  can be larger than ( )H X , this is not 
possible for the average value calculated over all the outputs: 

2 2
, ,

( ) ( , )
( , ) log ( , ) log

( ) ( ) ( )

i

j i j
i j i j

i j i ji i j

xP y P x y
P x y P x y

P x P x P y
   

Then 

,

( ) ( )
( , ) ( , ) 0

( , )
i j

i j
i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2
1

log ( ) 0
M

i
i

i i

QP
P

  

The above expression can be applied due to the factor 
( ) ( ),i jP x P y which is the product of two probabilities, so 

that it behaves as the quantity iQ , which in this expression is 

a dummy variable that fits the condition 1ii
Q  . It can be 

concluded that the average mutual information is a non-
negative number. It can also be equal to zero, when the input 
and the output are independent of each other. A related 
entropy called the joint entropy is defined as 

2
,

2
,

2
,

1( , ) ( , ) log
( , )

( ) ( )
( , ) log

( , )

1( , ) log
( ) ( )

i j
i j i j

i j
i j

i j i j

i j
i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 

 
Theorem 1.5: Entropies of the binary erasure channel (BEC) 
The BEC is defined with an alphabet of two inputs and three 
outputs, with symbol probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 
probabilities 

 
3 2

2 1

3
1

1
2

3
2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y yP p and Px x
yand P x
yand P px
yand P px

  





 

 

 
Lemma 1.7. Given an arbitrary restricted time-discrete, 
amplitude-continuous channel whose restrictions are 
determined by sets nF and whose density functions exhibit no 
dependence on the state s , let n be a fixed positive integer, 
and ( )p x an arbitrary probability density function on 
Euclidean n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F . For any real 

number a, let 
( | )( , ) : log (1)

( )
p y xA x y a

p y
 

  
 

 

Then for each positive integer u , there is a code ( , , )u n 
such that 

   ( , ) (2)aue P X Y A P X F       
Where 
 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 

 

Proof: A sequence (1)x F such that 

 
 

1
(1)| 1

: ( , ) ;
x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)xA . Having chosen 
(1) ( 1),........, kx x  and 1 1,..., kB B  , select kx F such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 
 

Set ( )

1

1k

k
k ix i

B A B


  , If the process does not terminate 

in a finite number of steps, then the sequences ( )ix and 
decoding sets , 1,2,..., ,iB i u form the desired code. Thus 
assume that the process terminates after t  steps. (Conceivably 

0t  ). We will show t u  by showing that  
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   ( , )ate P X Y A P X F      . We proceed as 
follows.  

Let 

 
1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )
x

x

t
jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 
 
 

G. Algorithms 
Ideals.    Let A be a ring. Recall that an ideal a in A is a 
subset such that a is subgroup of A regarded as a group under 
addition; 

 ,a a r A ra A       
The ideal generated by a subset S of A is the intersection of all 
ideals A containing a ----- it is easy to verify that this is in fact 
an ideal, and that it consist of all finite sums of the form 

i i
r s  with ,i ir A s S  . When  1,....., mS s s , we 

shall write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set  | ,a b a a b b    is 

an ideal, denoted by a b . The ideal generated by  

 | ,ab a a b b  is denoted by ab . Note that 

ab a b  . Clearly ab consists of all finite sums i i
a b  

with ia a  and ib b , and if 1( ,..., )ma a a  and 

1( ,..., )nb b b , then 1 1( ,..., ,..., )i j m nab a b a b a b .Let a  
be an ideal of A. The set of cosets of a in A forms a ring 

/A a , and a a a  is a homomorphism : /A A a  . 

The map 1( )b b   is a one to one correspondence 
between the ideals of /A a  and the ideals of A  containing a
An ideal p  if prime if p A  and ab p a p    or 
b p . Thus p  is prime if and only if /A p  is nonzero and 
has the property that  0, 0 0,ab b a      i.e., 

/A p is an integral domain. An ideal m  is maximal if 
|m A  and there does not exist an ideal n  contained strictly 

between m and A . Thus m is maximal if and only if /A m  
has no proper nonzero ideals, and so is a field. Note that m  
maximal   m prime. The ideals of A B  are all of the 
form a b , with a  and b  ideals in A  and B . To see this, 
note that if c  is an ideal in  A B  and ( , )a b c , then 

( ,0) ( , )(1,0)a a b c   and (0, ) ( , )(0,1)b a b c  . This 
shows that c a b   with  

 | ( , )a a a b c some b b  
  

and  

   | ( , )b b a b c some a a  
 

 
Let A  be a ring. An A -algebra is a ring B  together with a 
homomorphism :Bi A B . A homomorphism of A -algebra 

B C  is a homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all . An  A -algebra B is said 
to be finitely generated ( or of finite-type over A) if there exist 
elements 1,..., nx x B  such that every element of B can be 

expressed as a polynomial in the ix  with coefficients in ( )i A
, i.e., such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring homomorphism 

A B  is finite, and B  is finitely generated as an A-
module. Let k  be a field, and let A be a k -algebra. If 1 0  
in A , then the map k A  is injective, we can identify k
with its image, i.e., we can regard k as a subring of A  . If 1=0 
in a ring R, the R is the zero ring, i.e.,  0R  . Polynomial 

rings.  Let  k  be a field. A monomial[14] in 1,..., nX X  is an 

expression of the form 1
1 ... ,naa

n jX X a N  . The total 

degree of the monomial[14] is ia . We sometimes 

abbreviate it by 1, ( ,..., ) n
nX a a   � . The elements of 

the polynomial ring  1,..., nk X X  are finite sums
1

1 1.... 1 ....... , ,n

n n

aa
a a n a a jc X X c k a  �

   
With the obvious notions of equality, addition and 
multiplication. Thus the monomial[14]s from basis for  

 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only units in it 
are the nonzero constant polynomials[30]. A polynomial 

1( ,..., )nf X X  is irreducible if it is nonconstant and has only 

the obvious factorizations, i.e., f gh g   or h  is 

constant. Division in  k X . The division algorithm[22] 

allows us to divide a nonzero polynomial into another: let f  

and g  be polynomials[30] in  k X with 0;g   then there 

exist unique polynomials[30]  ,q r k X  such that 

f qg r   with either 0r   or deg r  < deg g . Moreover, 

a A
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there is an algorithm for deciding whether ( )f g , namely, 
find r and check whether it is zero. Moreover, the Euclidean 
algorithm allows to pass from finite set of generators for an 
ideal in  k X to a single generator by successively replacing 
each pair of generators with their greatest common divisor. 

 
 (Pure) lexicographic ordering (lex). Here monomial[14]s are 
ordered by lexicographic(dictionary) order. More precisely, let 

1( ,... )na a   and 1( ,... )nb b   be two elements of n� ; 

then     and  X X  (lexicographic ordering) if, in 
the vector difference   � , the left most nonzero entry 
is positive. For example,  
 2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that this isn’t 
quite how the dictionary would order them: it would put 
XXXYYZZZZ  after XXXYYZ . Graded reverse 

lexicographic order (grevlex). Here monomial[14]s are 
ordered by total degree, with ties broken by reverse 
lexicographic ordering. Thus,    if i ia b  , or 

i ia b   and in    the right most nonzero entry is 
negative. For example:  

4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 
5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ  . 

 
Orderings on  1,... nk X X  . Fix an ordering on the 

monomial[14]s in  1,... nk X X . Then we can write an 

element f  of  1,... nk X X  in a canonical fashion, by re-
ordering its elements in decreasing order. For example, we 
would write 

2 2 3 2 24 4 5 7f XY Z Z X X Z      
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex       
or 

2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex      
Let  1,..., na X k X X

   , in decreasing order: 

0 1

0 1 0 1 0..., ..., 0f a X X 
         

  
Then we define. 

 The multidegree of f  to be multdeg( f )= 0 ;  

 The leading coefficient of f to be LC( f )=
0

a ; 

 The leading monomial[14] of  f to be LM( f ) = 
0X  ; 

 The leading term of f to be LT( f ) = 0

0
a X 
   

For the polynomial 24 ...,f XY Z   the multidegree is 
(1,2,1), the leading coefficient is 4, the leading monomial[14] 
is 2XY Z , and the leading term is  24XY Z . The division 
algorithm[22] in  1,... nk X X . Fix a monomial[14] 

ordering in 2� . Suppose given a polynomial f  and an 

ordered set 1( ,... )sg g  of polynomials[30]; the division 

algorithm[22] then constructs polynomials[30] 1,... sa a  and 

r   such that 1 1 ... s sf a g a g r      Where either 0r   
or no monomial[14] in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 1( ) | ( )LT g LT f , divide 

1g  into f  to get 

 1 1 1 1
1

( ), ,...,
( ) n

LT ff a g h a k X X
LT g

   
 

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not divisible by 

1( )LT g . Now divide 2g  into 1f , and so on, until 

1 1 1... s sf a g a g r      With 1( )LT r  not divisible by 

any 1( ),... ( )sLT g LT g   Step 2: Rewrite 1 1 2( )r LT r r  , 

and repeat Step 1 with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 'ia s  )   
Monomial[14] ideals. In general, an ideal a  will contain a 
polynomial without containing the individual terms of the 
polynomial; for example, the ideal 2 3( )a Y X   contains 

2 3Y X but not 2Y  or 3X . 
 

DEFINITION 1.5. An ideal a  is monomial[14] if 
c X a X a 
     

 all   with 0c  .  
PROPOSITION 1.3. Let a be a monomial[14] ideal, and let 

 |A X a  . Then A satisfies the condition 

, ( )nA        �   And a  is the k -

subspace of  1,..., nk X X  generated by the ,X A   . 

Conversely, of A  is a subset of n�  satisfying   , then the 

k-subspace  a  of  1,..., nk X X  generated by 

 |X A   is a monomial[14] ideal. 

 
PROOF.  It is clear from its definition that a monomial[14] 
ideal a  is the  k -subspace of  1,..., nk X X
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generated by the set of monomial[14]s it contains. If 
X a 

 

and  1,..., nX k X X 
 . 

   
If a permutation is chosen uniformly and at random from the 

!n  possible permutations in ,nS  then the counts ( )n
jC  of 

cycles of length j  are dependent random variables. The joint 

distribution of ( ) ( ) ( )
1( ,..., )n n n

nC C C  follows from 
Cauchy[8]’s formula, and is given by 

( )

1 1

1 1 1[ ] ( , ) 1 ( ) , (1.1)
! !

j
nn

cn
j

j j j

P C c N n c jc n
n j c 

 
    

 
 

  
for nc � .  
 
Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1( ) 1 (1.4)
j

j

n

mn n n
mn

j j
jj j

m m

E C jm n
j  

     
             

 
  

Proof.   This can be established directly by exploiting 

cancellation of the form 
[ ] !/ 1/ ( )!jm
j j j jc c c m    when 

,j jc m  which occurs between the ingredients in 
Cauchy[8]’s formula and the falling factorials in the moments. 
Write jm jm . Then, with the first sum indexed by 

1( ,... ) n
nc c c  �  and the last sum indexed by  

1( ,..., ) n
nd d d  �  via the correspondence 

,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 11
( )!

j j

j

j
j j

j j

n n
m mn n

j j
cj j

mnn
j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 1( ),m n  

corresponding to the fact that if 0,n m   then 0jd   for 

,j n m   and a random permutation in n mS   must have 

some cycle structure 1( ,..., )n md d  . The moments of ( )n
jC   

follow immediately as 

 ( ) [ ]( ) 1 (1.2)n r r
jE C j jr n    

We note for future reference that (1.4) can also be written in 
the form  

[ ] [ ]( )

11 1
( ) 1 , (1.3)j j

n n n
m mn

j j j
jj j

E C E Z jm n
 

     
      

    
    

Where the jZ  are independent Poisson-distribution random 

variables that satisfy ( ) 1 /jE Z j   
 
The marginal distribution of cycle counts provides a formula 
for the joint distribution of the cycle counts ,n

jC  we find the 

distribution of n
jC  using a combinatorial approach combined 

with the inclusion-exclusion formula. 
 
Lemma  1.8.   For 1 ,j n   

 [ / ]
( )

0
[ ] ( 1) (1.1)

! !

k ln j k
n l

j
l

j jP C k
k l

 



     

Proof.     Consider the set I  of all possible cycles of length 
,j  formed with elements chosen from  1, 2,... ,n  so that 

[ ]/j jI n . For each ,I  consider the “property” G  of 

having ;  that is,  G is the set of permutations nS   
such that   is one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,...,n  not in   
must be permuted among themselves. To use the inclusion-
exclusion formula we need to calculate the term ,rS  which is 
the sum of the probabilities of the r -fold intersection of 
properties, summing over all sets of r distinct properties. 
There are two cases to consider. If the r properties are 
indexed by r cycles having no elements in common, then the 
intersection specifies how rj  elements are moved by the 

permutation, and there are ( )!1( )n rj rj n   permutations 

in the intersection. There are [ ] / ( !)rj rn j r  such intersections. 
For the other case, some two distinct properties name some 
element in common, so no permutation can have both these 
properties, and the r -fold intersection is empty. Thus 

[ ]

( )!1( )

1 11( )
! ! !

r
rj

r r

S n rj rj n
n rj n
j r n j r

  

  
  

Finally, the inclusion-exclusion series for the number of 
permutations having exactly k  properties is 

,
0
( 1)l

k l
l

k l
S

l 


 
  

 
   

Which simplifies to (1.1) Returning to the original hat-check 
problem, we substitute j=1 in (1.1) to obtain the distribution of 
the number of fixed points of a random permutation. For 

0,1,..., ,k n   
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( )
1

0

1 1[ ] ( 1) , (1.2)
! !

n k
n l

l
P C k

k l





     

and the moments of ( )
1

nC  follow from (1.2) with 1.j   In 

particular, for  2,n   the mean and variance of ( )
1

nC are both 

equal to 1. The joint distribution of ( ) ( )
1( ,..., )n n

bC C  for any 

1 b n   has an expression similar to (1.7); this too can be 
derived by inclusion-exclusion. For any 1( ,..., ) b

bc c c  �  

with ,im ic   

1

( ) ( )
1

...

01 1

[( ,..., ) ]

1 1 1 1( 1) (1.3)
! !

i i

b

i

n n
b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l
 

 
 



          
     



    

The joint moments of the first b  counts ( ) ( )
1 ,...,n n

bC C  can be 
obtained directly from (1.2) and (1.3) by setting 

1 ... 0b nm m      
 

The limit distribution of cycle counts 
It follows immediately from Lemma 1.2 that for each fixed 

,j  as ,n  

( ) 1/[ ] , 0,1, 2,...,
!

k
n j

j
jP C k e k
k


     

So that ( )n
jC converges in distribution to a random variable 

jZ  having a Poisson distribution with mean 1/ ;j  we use the 

notation ( )n
j d jC Z  where (1 / )j oZ P j�   to describe 

this. Infact, the limit random variables are independent. 
 
Theorem 1.6   The process of cycle counts converges in 
distribution to a Poisson process of �  with intensity 1j . 
That is, as ,n    

( ) ( )
1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z   

Where the , 1, 2,...,jZ j   are independent Poisson-

distributed random variables with  
1( )jE Z
j

   

Proof.  To establish the converges in distribution one shows 
that for each fixed 1,b   as ,n   

 ( ) ( )
1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     
 
Error rates 
The proof of Theorem says nothing about the rate of 
convergence. Elementary analysis can be used to estimate this 

rate when 1b  . Using properties of alternating series with 
decreasing terms, for 0,1,..., ,k n   

( )
1 1

1 1 1( ) [ ] [ ]
! ( 1)! ( 2)!

1
!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

   

 
It follows that  

1 1
( )
1 1

0

2 2 1[ ] [ ] (1.11)
( 1)! 2 ( 1)!

n nn
n

k

n P C k P Z k
n n n

 




    

     

Since 
1

1
1 1 1[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!
eP Z n

n n n n n



     
    

  

We see from (1.11) that the total variation distance between 
the distribution ( )

1( )nL C  of ( )
1

nC  and the distribution 1( )L Z  

of 1Z  
 
Establish the asymptotics of ( )( )n

nA C     under conditions 

0( )A  and 01( ),B  where 

 
'

( ) ( )

1 1

( ) 0 ,
i i

n n
n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for some 
' 0.g    We start with the expression 

'

'
( ) 0

0

0
1

1

[ ( ) ][ ( )]
[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i
i n i

r j r

P T Z nP A C
P T Z n

E
ir


 
  






 
  

 


  

  

'
0

1 1

1

1 '
1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d i d i d
n

O n n

  



 







 
   

 



   

and 

  

'
0

1 1

1

1
1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d i d i d
n

O n n


 



 







 
   

 



  

Where  
'
1,2,7 ( )n  refers to the quantity derived from 'Z . It 

thus follows that ( ) (1 )[ ( )]n d
nP A C Kn  �  for a constant 
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K , depending on Z  and the '
ir  and computable explicitly 

from (1.1) – (1.3), if Conditions 0( )A  and 01( )B  are satisfied 

and if 
'

( )g
i O i    from some ' 0,g   since, under these 

circumstances, both  
1 '

1,2,7 ( )n n  and   
1

1,2,7 ( )n n  tend 

to zero as .n   In particular, for polynomials[30] and 
square free polynomials[30], the relative error in this 
asymptotic approximation is of order 1n  if ' 1.g    
 
For 0 / 8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))
( , ),

TV

TV

d L C b L Z b

d L C b L Z b
n b




� �

  

Where  7,7 ( , ) ( / )n b O b n   under Conditions 0 1( ), ( )A D  

and 11( )B  Since, by the Conditioning Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
� �

  
It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))
( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]1 (1.4)
[ ( ) ]

TV

TV b b

bA r A

bn

n

d L C b L Z b
d L T C L T Z

P T Z r

P T Z n r
P T Z n





 

  
 

 



� �

  

Suppressing the argument Z  from now on, we thus obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
� �

 

0
0 0

[ ][ ] 1
[ ]
bn

b
r n

P T n rP T r
P T n 

  
   

 
  

[ /2]
0

0
/2 0 0

[ ][ ]
[ ]

n
b

b
r n r b

P T rP T r
P T n 


  

   

0
0

[ ]( [ ] [ ]
n

b bn bn
s

P T s P T n s P T n r
 

 
       
 
  

[ / 2]

0 0
/ 2 0

[ ] [ ]
n

b b
r n r

P T r P T r
 

      

 [ /2]

0
0 0

[ /2]

0 0
0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b
s n
n n

b bn n
s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n



  

    
 



     



 
 The first sum is at most 1

02 ;bn ET the third is bound by 

 

0 0/ 2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3 ,
[0,1]

b nn s n
P T s P T n

n b n
n P





 
 


  

 

 

[ / 2] [ /2]
2

0 010.8
0 0

10.8 0

3 14 ( ) [ ] [ ]
[0,1] 2

12 ( )

[0,1]

n n

b b
r s

b

n n n P T r P T s r s
P

n ET
P n












 

 



  



 
  

Hence we may take 

 
 

 

10.81
07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6 ( / 2, ) (1.5)
[0,1]

b

n
n b n ET Z P

P

n b
P
















    
  



  

 
Required order under Conditions 0 1( ), ( )A D  and 11( ),B  if 

( ) .S     If not,    10.8 n  can be replaced by    10.11 n 

in the above, which has the required order, without the 
restriction on the ir  implied by ( )S   . Examining the 

Conditions  0 1( ), ( )A D  and 11( ),B it is perhaps surprising to 

find that 11( )B  is required instead of just 01( );B  that is, that 

we should need 1

2
( )a

ill
l O i 


   to hold for some 

1 1a  . A first observation is that a similar problem arises 

with the rate of decay of 1i  as well. For this reason, 1n  is 

replaced by 1n
�

. This makes it possible to replace condition 

1( )A  by the weaker pair of conditions 0( )A and 1( )D in the 

eventual assumptions needed for    7,7 ,n b  to be of order 

( / );O b n   the decay rate requirement of order 1i    is 

shifted from 1i  itself to its first difference. This is needed to 
obtain the right approximation error for the random mappings 
example. However, since all the classical applications make 
far more stringent assumptions about the 1, 2,i l   than are 

made in 11( )B . The critical point of the proof is seen where 
the initial estimate of the difference
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( ) ( )[ ] [ 1]m m
bn bnP T s P T s    . The factor  10.10 ( ),n  

which should be small, contains a far tail element from 1n
�

 of 
the form 1 1( ) ( ),n u n   which is only small if 1 1,a   

being otherwise of order 11( )aO n    for any 0,   since 

2 1a   is in any case assumed. For / 2,s n  this gives rise 

to a contribution of order  11( )aO n     in the estimate of the 

difference [ ] [ 1],bn bnP T s P T s     which, in the 
remainder of the proof, is translated into a contribution of 
order 11( )aO tn    for differences of the form 

[ ] [ 1],bn bnP T s P T s     finally leading to a 

contribution of order 1abn    for any 0   in  7.7 ( , ).n b  

Some improvement would seem to be possible, defining the 
function g  by    ( ) 1 1 ,w s w s tg w       differences that are 

of the form [ ] [ ]bn bnP T s P T s t     can be directly 
estimated, at a cost of only a single contribution of the form 

1 1( ) ( ).n u n   Then, iterating the cycle, in which one 
estimate of a difference in point probabilities is improved to 
an estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a
bn bnP T s P T s t O n t n          for any 

0   could perhaps be attained, leading to a final error 

estimate in order  11( )aO bn n    for any 0  , to 

replace  7.7 ( , ).n b  This would be of the ideal order 

( / )O b n for large enough ,b  but would still be coarser for 
small .b   
 
 
With b and n  as in the previous section, we wish to show 
that  

 

1
0 0

7,8

1( ( [1, ]), ( [1, ])) ( 1) 1
2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



  

Where  
121 1

7.8 ( , ) ( [ ])n b O n b n b n        for any 

0   under Conditions 0 1( ), ( )A D  and 12( ),B with 12 . 
The proof uses sharper estimates. As before, we begin with the 
formula  

 
0

0 0

( ( [1, ]), ( [1, ]))

[ ][ ] 1
[ ]

TV

bn
b

r n

d L C b L Z b

P T n rP T r
P T n 

  
    


� �

  

Now we observe that  

 

[ /2]
0

0
0 00 0

0
[ /2] 1

2 2
0 0 0/2

0

10.5(2)2 2
0

[ ] [ ][ ] 1
[ ] [ ]

[ ]( [ ] [ ])

4 ( max [ ]) / [ ]

[ / 2]
3 ( / 2, )

8 , (1.1)
[0,1]

n
bn b

b
r rn n

n

b bn bn
s n

b b nn s n

b

b

P T n r P T rP T r
P T n P T n

P T s P T n s P T n r

n ET P T s P T n

P T n
n b

n ET
P





 

 



 



   
     

      

   

 

 

 


  

We have   

     

0[ /2]

0
0

[ /2]

0
0

[ /2]

0 0
0

0 02
0 00

1
010.14 10.8

[ ]
[ ]

( [ ]( [ ] [ ]

( )(1 )[ ] [ ] )
1

1 [ ] [ ]
[ ]

( , ) 2( ) 1 4 ( )

6

bn

n
r

n

b bn bn
s

n

b n
s

b b
r sn

P T r
P T n

P T s P T n s P T n r

s rP T s P T n
n

P T r P T s s r
n P T n

n b r s n K n



   



 

 

 

 




 
       

 

  
   

 

   


    









 

 

  


0 10.14

2 2
0 0 10.8

( , )
[0,1]

4 1 4 ( )

3( ) , (1.2)
[0,1]

b

b

ET n b
nP

n ET K n

nP








  



   

  

 
The approximation in (1.2) is further simplified by noting that  
[ /2] [ /2]

0 0
0 0

( )(1 )[ ] [ ]
1

n n

b b
r s

s rP T r P T s
n


 

  
   

   

0
0

( )(1 )[ ]
1b

s

s rP T s
n


 

  
  

 
  

 

[ /2]

0 0
0 [ / 2]

1 2 2
0 0 0

( ) 1
[ ] [ ]

1

1 ( 1 / 2 ) 2 1 , (1.3)

n

b b
r s n

b b b

s r
P T r P T s

n

n E T T n n ET



 
 

 

 
  



    

   

 
and then by observing that  
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 

0 0
[ /2] 0

1
0 0 0 0

2 2
0

( )(1 )[ ] [ ]
1

1 ( [ / 2] ( 1 / 2 ))

4 1 (1.4)

b b
r n s

b b b b

b

s rP T r P T s
n

n ET P T n E T T n

n ET







 





  
   

    

 

 
 

 
Combining the contributions of (1.2) –(1.3), we thus find tha

 

    
 

1
0 0

0 0

7.8

1
010.5(2) 10.14

10.82 2
0

( ( [1, ]), ( [1, ]))

( 1) [ ] [ ]( )(1 )

( , )

3 ( / 2, ) 2 ( , )
[0,1]

24 1 ( )
2 4 3 1 (1.5)

[0,1]

TV

b b
r s

b

b

d L C b L Z b

n P T r P T s s r

n b

n b n ET n b
P

n
n ET

P









 


 






  






 
      

 


 

      
  

 

� �

 

The quantity  7.8 ( , )n b is seen to be of the order claimed 

under Conditions 0 1( ), ( )A D  and 12( )B , provided that 

( ) ;S     this supplementary condition can be removed if 

 10.8 ( )n   is replaced by  10.11 ( )n     in the definition of 

 7.8 ( , )n b , has the required order without the restriction on 

the ir  implied by assuming that ( ) .S    Finally, a direct 
calculation now shows that 

0 0
0 0

0 0

[ ] [ ]( )(1 )

1 1
2

b b
r s

b b

P T r P T s s r

E T ET





  

 
    

 

  

 

 
 
Example 1.0.  Consider the point (0,...,0) nO  � . For 
an arbitrary vector r , the coordinates of the point x O r   
are equal to the respective coordinates of the vector 

1: ( ,... )nr x x x  and 1( ,..., )nr x x . The vector r such as 
in the example is called the position vector or the radius vector 
of the point x  . (Or, in greater detail: r  is the radius-vector of 
x  w.r.t an origin O). Points are frequently specified by their 
radius-vectors. This presupposes the choice of O as the 
“standard origin”.   Let us summarize. We have considered 

n�  and interpreted its elements in two ways: as points and as 
vectors. Hence we may say that we leading with the two 
copies of  :n�  

n� = {points},      n� = {vectors}  
Operations with vectors: multiplication by a number, addition. 
Operations with points and vectors: adding a vector to a point 
(giving a point), subtracting two points (giving a vector). n�
treated in this way is called an n-dimensional affine space. (An 

“abstract” affine space is a pair of sets , the set of points and 
the set of vectors so that the operations as above are defined 
axiomatically). Notice that vectors in an affine space are also 
known as “free vectors”. Intuitively, they are not fixed at 
points and “float freely” in space. From n� considered as an 
affine space we can precede in two opposite directions: n�  as 
an Euclidean space   n� as an affine space   n� as a 
manifold.Going to the left means introducing some extra 
structure which will make the geometry[17] richer. Going to 
the right means forgetting about part of the affine structure; 
going further in this direction will lead us to the so-called 
“smooth (or differentiable) manifolds”. The theory of 
differential forms does not require any extra geometry[17]. So 
our natural direction is to the right. The Euclidean structure, 
however, is useful for examples and applications. So let us say 
a few words about it: 
 
Remark 1.0.  Euclidean geometry[17].  In n�  considered 
as an affine space we can already do a good deal of 
geometry[17]. For example, we can consider lines and 
plane[6]s, and quadric surfaces like an ellipsoid. However, we 
cannot discuss such things as “lengths”, “angles” or “areas” 
and “volumes”. To be able to do so, we have to introduce 
some more definitions, making n� a Euclidean space. 
Namely, we define the length of a vector 1( ,..., )na a a  to 
be  

1 2 2: ( ) ... ( ) (1)na a a     
After that we can also define distances between points as 
follows: 

( , ) : (2)d A B AB


  

One can check that the distance so defined possesses natural 
properties that we expect: is it always non-negative and equals 
zero only for coinciding points; the distance from A to B is the 
same as that from B to A (symmetry); also, for three points, A, 
B and C, we have ( , ) ( , ) ( , )d A B d A C d C B   (the 
“triangle inequality”). To define angles, we first introduce the 
scalar product of two vectors 
 1 1( , ) : ... (3)n na b a b a b     

Thus ( , )a a a  . The scalar product is also denote by dot: 

. ( , )a b a b , and hence is often referred to as the “dot 
product” . Now, for nonzero vectors, we define the angle 
between them by the equality 

( , )cos : (4)a b
a b

    

The angle itself is defined up to an integral multiple 
of 2  . For this definition to be consistent we have to ensure 
that the r.h.s. of (4) does not exceed 1 by the absolute value. 
This follows from the inequality 
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2 22( , ) (5)a b a b   
known as the Cauchy[8]–Bunyakovsky–Schwarz inequality 
(various combinations of these three names are applied in 
different books). One of the ways of proving (5) is to consider 
the scalar square of the linear combination ,a tb  where 

t R . As  ( , ) 0a tb a tb    is a quadratic polynomial in 
t  which is never negative, its discriminant must be less or 
equal zero. Writing this explicitly yields (5). The triangle 
inequality for distances also follows from the inequality (5). 

 
Example 1.1.    Consider the function ( ) if x x  (the i-th 

coordinate). The linear function idx  (the differential of ix  ) 
applied to an arbitrary vector h  is simply ih .From these 
examples follows that we can rewrite df  as 

1
1 ... , (1)n

n
f fdf dx dx
x x
 

  
 

  

which is the standard form. Once again: the partial 
derivatives[111-120] in (1) are just the coefficients (depending 
on x ); 1 2, ,...dx dx  are linear functions giving on an arbitrary 

vector h  its coordinates 1 2, ,...,h h  respectively. Hence 
  

1
( ) 1( )( )

... , (2)

hf x

n
n

fdf x h h
x

f h
x


   







 

 
Theorem   1.7.     Suppose we have a parametrized curve 

( )t x t  passing through 0
nx  �  at 0t t  and with the 

velocity vector 0( )x t   Then  

0 0 0
( ( )) ( ) ( ) ( )( ) (1)df x t t f x df x
dt       

 
Proof.  Indeed, consider a small increment of the parameter 

0 0:t t t t  , Where 0t  . On the other hand, we 

have  0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for an 

arbitrary vector h , where ( ) 0h   when 0h   . 
Combining it together, for the increment of ( ( ))f x t   we 
obtain 

0 0

0

0

( ( ) ( )
( )( . ( ) )

( . ( ) ). ( )
( )( ). ( )

f x t t f x
df x t t t

t t t t t t
df x t t t

 

    

 

  
    

        

    

     

For a certain ( )t   such that ( ) 0t   when 0t   

(we used the linearity of 0( )df x ). By the definition, this 

means that the derivative of ( ( ))f x t  at 0t t  is exactly

0( )( )df x  . The statement of the theorem can be expressed 
by a simple formula: 

1
1

( ( )) ... (2)n
n

df x t f fx x
dt x x

 
  
 

  

 
To calculate the value Of df  at a point 0x  on a given vector 

  one can take an arbitrary curve passing Through 0x  at 0t  

with   as the velocity vector at 0t and calculate the usual 

derivative of ( ( ))f x t  at 0t t . 
 

Theorem 1.8.  For functions , :f g U  � , ,nU  �   

 
( ) (1)
( ) . . (2)

d f g df dg
d fg df g f dg

  
 

   

 
Proof. Consider an arbitrary point 0x  and an arbitrary vector 

  stretching from it. Let a curve ( )x t  be such that 

0 0( )x t x  and 0( )x t  .  

Hence 0( )( )( ) ( ( ( )) ( ( )))dd f g x f x t g x t
dt

     

at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))dd fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately follow from 
the corresponding formulae for the usual derivative Now, 
almost without change the theory generalizes to functions 
taking values in  m�  instead of � . The only difference is 
that now the differential of a map : mF U  �  at a point x  
will be a linear function taking vectors in n�  to vectors in 

m� (instead of � ) . For an arbitrary vector | ,nh �   
 

( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h  . We have  
1( ,..., )mdF dF dF  and  
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1
1

1 1

11

1

...

....

... ... ... ... (4)

...

n
n

n

nm m

n

F FdF dx dx
x x

F F
dxx x

dxF F
x x

 
  
 

  
     

   
         

  

 
In this matrix notation we have to write vectors as vector-
columns. 

 
Theorem 1.9. For an arbitrary parametrized curve ( )x t  in 

n� , the differential of a   map : mF U  �  (where 
nU  � ) maps the velocity vector ( )x t  to the velocity 

vector of the curve ( ( ))F x t  in :m�   
.( ( )) ( ( ))( ( )) (1)dF x t dF x t x t

dt
     

 
Proof.  By the definition of the velocity vector, 

.
( ) ( ) ( ). ( ) (2)x t t x t x t t t t          

Where ( ) 0t    when 0t  . By the definition of the 
differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h      

Where ( ) 0h   when 0h  . we obtain  
.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 
For some ( ) 0t    when 0t  . This precisely means 

that 
.

( ) ( )dF x x t  is the velocity vector of ( )F x . As every 
vector attached to a point can be viewed as the velocity vector 
of some curve passing through this point, this theorem gives a 
clear geometric picture of dF  as a linear map on vectors. 

   
Theorem 1.10 Suppose we have two maps :F U V  and 

: ,G V W  where , ,n m pU V W  � � �  (open 
domains). Let : ( )F x y F x . Then the differential of 

the composite map :GoF U W  is the composition of the 
differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   
 

Proof.   We can use the description of the differential 

.Consider a curve ( )x t  in n�  with the velocity vector 
.
x . 

Basically, we need to know to which vector in  p� it is taken 
by ( )d GoF . the curve ( )( ( ) ( ( ( ))GoF x t G F x t . By the 
same theorem, it equals the image under dG  of the Anycast 
Flow vector to the curve ( ( ))F x t  in m� . Applying the 
theorem once again, we see that the velocity vector to the 

curve ( ( ))F x t is the image under dF of the vector 
.
( )x t . 

Hence 
. .

( )( ) ( ( ))d GoF x dG dF x   for an arbitrary vector 
.
x  . 

 
Corollary 1.0.    If we denote coordinates in n� by 

1( ,..., )nx x  and in m� by 1( ,..., )my y , and write 

1
1

1
1

... (1)

... , (2)

n
n

n
n

F FdF dx dx
x x
G GdG dy dy
y y

 
  
 
 

  
 

  

Then the chain rule can be expressed as follows: 
1

1( ) ... , (3)m
m

G Gd GoF dF dF
y y
 

  
 

  

Where idF  are taken from (1). In other words, to get 
( )d GoF  we have to substitute into (2) the expression for 

i idy dF  from (3). This can also be expressed by the 
following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F
dxy y x x

d GoF
dxG G F F

y y x x

     
                                  

 

 
i.e., if dG  and dF  are expressed by matrices of partial 
derivatives[111-120], then ( )d GoF  is expressed by the 
product of these matrices. This is often written as  
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1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z
y yx x

z z z z
x x y y

y y
x x

y y
x x

    
        
  
                

  
   
 
      

 

Or 

1
, (6)

im

a i a
i

z z y
x y x

 



  


     

Where it is assumed that the dependence of my�  on 
nx�  is given by the map F , the dependence of pz�  

on my�  is given by the map ,G  and the dependence of  
pz � on nx� is given by the composition GoF .  

 
Definition 1.6.  Consider an open domain nU  � . Consider 
also another copy of n� , denoted for distinction n

y� , with 

the standard coordinates 1( ... )ny y . A system of coordinates 
in the open domain U  is given by a map : ,F V U  

where n
yV  �  is an open domain of n

y� , such that the 
following three conditions are satisfied :  

(1) F  is smooth; 
(2) F  is invertible; 

(3) 1 :F U V   is also smooth 
 

The coordinates of a point x U  in this system are the 
standard coordinates of 1( ) n

yF x �  
In other words,  

1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y   

Here the variables 1( ..., )ny y  are the “new” coordinates of 
the point x   

 
Example  1.2.     Consider a curve in 2�  specified in polar 
coordinates as  

( ) : ( ), ( ) (1)x t r r t t     
We can simply use the chain rule. The map ( )t x t  can be 
considered as the composition of the maps  

( ( ), ( )), ( , ) ( , )t r t t r x r    . Then, by the chain 
rule, we have  

. . .
(2)dx x dr x d x xx r

dt r dt dt r



 

   
    

   
   

Here 
.
r  and 

.
  are scalar coefficients depending on t , 

whence the partial derivatives[111-120] ,x x
r 

 
    are 

vectors depending on point in 2� . We can compare this with 

the formula in the “standard” coordinates: 
. . .

1 2x e x e y  . 

Consider the vectors   ,x x
r 

 
  . Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x
r
x r r

 

 








 


  

From where it follows that these vectors make a basis at all 
points except for the origin (where 0r  ). It is instructive to 
sketch a picture, drawing vectors corresponding to a point as 

starting from that point. Notice that  ,x x
r 

 
   are, 

respectively, the velocity vectors for the curves ( , )r x r    

0( )fixed   and 0( , ) ( )x r r r fixed   . We can 
conclude that for an arbitrary curve given in polar coordinates 

the velocity vector will have components 
. .

( , )r   if as a basis 

we take : , : :r
x xe er  
      

. . .
(5)rx e r e      

A characteristic feature of the basis ,re e  is that it is not 
“constant” but depends on point. Vectors “stuck to points” 
when we consider curvilinear coordinates. 

 
Proposition  1.3.   The velocity vector has the same 
appearance in all coordinate systems. 
Proof.        Follows directly from the chain rule and the 
transformation law for the basis ie .In particular, the elements 

of the basis ii
xe x



 (originally, a formal notation) can be 

understood directly as the velocity vectors of the coordinate 
lines 1( ,..., )i nx x x x   (all coordinates but ix  are fixed). 
Since we now know how to handle velocities in arbitrary 
coordinates, the best way to treat the differential of a map 

: n mF � �  is by its action on the velocity vectors. By 
definition, we set 

lalitha
Text Box
International Journal of P2P Network Trends and Technology (IJPTT) - Volume 2 Issue 6 November to December 2012


lalitha
Text Box
ISSN: 2249-2615                                    http://www.ijpttjournal.org                                     Page 22



International Journal of P2P Network Trends and Technology- Volume2Issue6- 2012 
 

ISSN: 2249-2615 http://www.internationaljournalssrg.org Page 93 
 

0 0 0
( ) ( ( ))( ) : ( ) ( ) (1)dx t dF x tdF x t t

dt dt
   

Now 0( )dF x  is a linear map that takes vectors attached to a 

point 0
nx �  to vectors attached to the point ( ) mF x �   

1
1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n
n

n

m
nm m

n

F FdF dx dx
x x

F F
dxx x

e e
dxF F

x x

 
  
 

  
     
  
         

  

In particular, for the differential of a function we always have  
1

1 ... , (3)n
n

f fdf dx dx
x x
 

  
 

  

Where ix  are arbitrary coordinates. The form of the 
differential does not change when we perform a change of 
coordinates. 

 
Example  1.3   Consider a 1-form in 2�  given in the 
standard coordinates: 

 
A ydx xdy     In the polar coordinates we will have 

cos , sinx r y r   , hence 
cos sin
sin cos

dx dr r d
dy dr r d

  
  

 
 

  

Substituting into A , we get 

2 2 2 2

sin (cos sin )
cos (sin cos )
(sin cos )

A r dr r d
r dr r d
r d r d

   
   

   

  
 

  

  

Hence  2A r d  is the formula for A  in the polar 
coordinates. In particular, we see that this is again a 1-form, a 
linear combination of the differentials of coordinates with 
functions as coefficients. Secondly, in a more conceptual way, 
we can define a 1-form in a domain U  as a linear function on 
vectors at every point of U : 

1
1( ) ... , (1)n

n         

If i
ie  , where ii

xe x



. Recall that the 

differentials of functions were defined as linear functions on 
vectors (at every point), and  

( ) (2)i i i
j jj

xdx e dx
x

    
    at every point 

x .  

 
Theorem  1.9.   For arbitrary 1-form   and path  , the 

integral 


  does not change if we change parametrization of 

  provide the orientation remains the same. 

Proof: Consider '( ( )), dxx t
dt

  and  '
'( ( ( ))), dxx t t

dt
  

As 

'
'( ( ( ))), dxx t t

dt
 = '

' '( ( ( ))), . ,dx dtx t t
dt dt

   

 
 
 
Let p  be a rational prime and let ( ).pK  �  We write   

for p  or this section. Recall that K  has degree 

( ) 1p p    over .�  We wish to show that  .KO  �  

Note that   is a root of 1,px   and thus is an algebraic 

integer; since K  is a ring we have that   .KO �  We 
give a proof without assuming unique factorization of ideals. 
We begin with some norm and trace computations. Let j  be 

an integer. If j is not divisible by ,p  then j  is a primitive 
thp  root of unity, and thus its conjugates are 

2 1, ,..., .p     Therefore 
 

2 1
/ ( ) ... ( ) 1 1j p

K pTr             �   

If p  does divide ,j  then 1,j   so it has only the one 

conjugate 1, and  / ( ) 1j
KTr p  �  By linearity of the 

trace, we find that  
2

/ /

1
/

(1 ) (1 ) ...

(1 )
K K

p
K

Tr Tr

Tr p

 

 

   

  
� �

�

 

We also need to compute the norm of 1  . For this, we use 
the factorization  

 
1 2

2 1

... 1 ( )

( )( )...( );

p p
p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  
 2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ), this shows 

that  / (1 )KN p �  The key result for determining the 

ring of integers KO  is the following. 
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LEMMA 1.9 
  (1 ) KO p  � �   

Proof.  We saw above that p  is a multiple of (1 )  in 

,KO  so the inclusion (1 ) KO p  � �  is immediate.  
Suppose now that the inclusion is strict. Since 
(1 ) KO � is an ideal of �  containing p�  and p� is 

a maximal ideal of � , we must have  (1 ) KO  � �  
Thus we can write  1 (1 )     

For some .KO   That is, 1   is a unit in .KO   
 
COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p  � �   
PROOF.       We have  
 

/ 1 1

1 1 1 1

1
1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p
p

Tr        

       

     



 




     

    

    

�

 

Where the i  are the complex embeddings of K  (which we 
are really viewing as automorphisms of K ) with the usual 
ordering.  Furthermore, 1 j  is a multiple of 1   in KO  

for every 0.j   Thus 

/ ( (1 )) (1 )K KTr O    �  
Since the trace is also a 

rational integer. 
 
PROPOSITION 1.4  Let p  be a prime number and let 

| ( )pK  �  be the thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x  � �  Thus 21, ,..., p
p p    is an 

integral basis for KO . 

PROOF.    Let   KO   and write 
2

0 1 2... p
pa a a   
      With .ia �  Then 

 
2

0 1

2 1
2

(1 ) (1 ) ( ) ...

( )p p
p

a a

a

    

  


     

 
  

By the linearity of the trace and our above calculations we find 
that  / 0( (1 ))KTr pa  �  We also have  

/ ( (1 )) ,KTr p  � � so 0a �   Next consider the 
algebraic integer  

1 3
0 1 2 2( ) ... ;p

pa a a a    
      This is an 

algebraic integer since 1 1p    is. The same argument as 

above shows that 1 ,a �  and continuing in this way we find 

that all of the ia  are in � . This completes the proof. 
  
Example 1.4   Let K  � , then the local ring ( )p�  is simply 

the subring of �  of rational numbers with denominator 

relatively prime to p . Note that this ring   ( )p� is not the 

ring p� of p -adic integers; to get  p� one must complete 

( )p� . The usefulness of ,K pO  comes from the fact that it has 
a particularly simple ideal structure. Let a be any proper ideal 
of ,K pO  and consider the ideal Ka O  of .KO  We claim 

that ,( ) ;K K pa a O O     That is, that a  is generated by the 

elements of a  in .Ka O  It is clear from the definition of an 

ideal that ,( ) .K K pa a O O   To prove the other inclusion, 

let   be any element of a . Then we can write /    

where KO   and .p   In particular, a   (since 

/ a    and a  is an ideal), so KO   and .p   so 

.Ka O    Since ,1/ ,K pO   this implies that 

,/ ( ) ,K K pa O O      as claimed.We can use this 

fact to determine all of the ideals of , .K pO  Let a  be any ideal 

of ,K pO and consider the ideal factorization of Ka O in 

.KO  write it as n
Ka O p b   For some n  and some ideal 

,b  relatively prime to .p  we claim first that , , .K p K pbO O  
We now find that 
  , , ,( ) n n

K K p K p K pa a O O p bO p O      Since , .K pbO  

Thus every ideal of ,K pO  has the form ,
n

K pp O  for some ;n  

it follows immediately that ,K pO is noetherian. It is also now 

clear that ,
n

K pp O is the unique non-zero prime ideal in ,K pO
. Furthermore, the inclusion , ,/K K p K pO O pO  Since 

, ,K p KpO O p   this map is also surjection, since the 

residue class of ,/ K pO    (with KO   and p  ) is 

the image of 1   in / ,K pO  which makes sense since   is 

invertible in / .K pO  Thus the map is an isomorphism. In 
particular, it is now abundantly clear that every non-zero 
prime ideal of ,K pO is maximal.  To show that ,K pO is a 
Dedekind domain, it remains to show that it is integrally 
closed in K . So let K   be a root of a polynomial with 

coefficients in  , ;K pO  write this polynomial as  
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11 0

1 0

...m mm

m

x x 
 





    With i KO   and .i K pO   

Set 0 1 1... .m      Multiplying by m  we find that   

is the root of a monic polynomial with coefficients in .KO  

Thus ;KO   since ,p   we have ,/ K pO   

. Thus  ,K pO is integrally close in .K   
 
COROLLARY 1.2.   Let K  be a number field of degree n  

and let   be in KO  then '
/ /( ) ( )K K KN O N � �   

PROOF.  We assume a bit more Galois theory than usual for 
this proof. Assume first that /K �  is Galois. Let   be an 
element of ( / ).Gal K �  It is clear that 

/( ) / ( ) ;K KO O      since ( ) ,K KO O   this shows 

that ' '
/ /( ( ) ) ( )K K K KN O N O  � � . Taking the product 

over all ( / ),Gal K  �  we have 
' '

/ / /( ( ) ) ( )n
K K K K KN N O N O � � �  Since / ( )KN �  is 

a rational integer and KO  is a free � -module of rank ,n    

// ( )K K KO N O�   Will have order / ( ) ;n
KN �  therefore 

 '
/ / /( ( ) ) ( )n

K K K K KN N O N O � � �  

This completes the proof.  In the general case, let L  be the 
Galois closure of K  and set [ : ] .L K m   
 
 

H. Micro fabrication 
Microtechnologies are developed for fabrication of 
micromachined neuroprosthetic implants. Many of these 
devices show useful results for research as well as for medical 
applications. To bring new products on the market, 
characterization of the long-term interface The design and the 
implantation method can influence the selectivity as well as 
intelligent data analysis or stimulation parameters. Especially 
for recording, the design of the electrode and the integration of 
preamplifiers improve the signal to noise ratio and thereby the 
reliability of the signals. Specific electrode configurations 
have to be chosen for the development of neuroprostheses and 
hybrid bionic systems characterized by different properties. 
For example, if we want to control the movements of a hand 
prosthesis multi-site cuff electrodes could be used. However, 
if sensory feedback has to be delivered, different (and more 
selective) electrodes (e.g., intrafascicular) have to be chosen as 
recently showed in [19]. 
 

I. Implantation tools and method 
One disadvantage of micro implants is that they are more 
difficult to handle. They were constructed to have the same 

size and mechanical properties as nerves, thus they are 
similarly sensitive. Implantation tools were designed with 
regard to the application. One example is the use of needles in 
combination with filaments, to pull microfabricated thin-film 
electrodes longitudinally into peripheral nerves [4]. The kinds 
of implantation are very different. This results on the one hand 
in a more or less traumatic impact on the nervous system, and 
on the other hand in different transmission functions between 
the electrode contact and the nerve fibres, as well as in a 
different selectivity of the electrodes. Additionally, the design 
of electrodes is influenced by the combination with electronics 
like multiplexers, stimulators, amplifiers or telemetry 
transmission systems. 
 

J. Intelligent electrodes 
Flexible polyimide-based cuff electrodes for functional 
electrical stimulation were designed with monolithic 
amplifiers and filter integrated to the substrate [20]. Organic 
field effect transistors can be used for neural stimulation [1]. 
The convergence of nano-bio-info-cogno technologies will 
enhance the toolset for medical research and allow medical 
intervention and monitoring through multifunctional 
nanorobots [21]. The trend in sensor systems is towards the 
integrated, wireband, multifunction sensor suite, in which 
processor/computer functions are extended to the sensing 
elements so that digitization occurs as early as possible in the 
sensing process. The multiplexer, which is used to reduce the 
numbers of cables, is encapsulated with silicon and parylene 
C. The signal processing includes preamplification, filtering 
[22] and in some application spike detection. The result is a 
smart system with a high number of electrodes, cable 
reduction, current sources and signal preprocessing. 
 

K. Biocompatibility and Instability 
The biocompatibility of the electrodes can be divided into the 
biochemical and the mechanical interaction with the tissue. 
Many materials, such as medical stainless steel or medical 
grade silicone, are available on the market. In any case, the 
production process can influence the material 
biocompatibility. Plasma activation is one example of 
changing the biocompatibility of surfaces. Additional to the 
process, the function of the material has to be considered. The 
electrode material for stimulation of the nervous tissue is only 
biocompatible in a restricted range of stimulation parameters. 
Mechanical interaction between the electrodes and the nervous 
tissue can influence the biocompatibility as well. The growth 
of connective tissue can be promoted by different mechanical 
properties of the electrode and the tissue. This is more critical 
in areas with a strong movement of the tissue. Connective 
tissue has insulating properties, and thus the presence of 
connective tissue between the electrode and the nervous 
system will reduce the quality of the signal transfer. Therefore, 
the design of the electrode should include considerations of 
the mechanical properties of the system, with regard to the 
application. Polyimide shows a good biocompatibility and 
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biostability. The impedance of the electrodes was tested 
electrochemically in vitro. 
 
New approaches for the combination of microelectrodes with 
living cell to biohybrid systems were tested. The idea was to 
settle cells at the electrode to change the regeneration 
behaviour of the surrounding neural tissue. Especially circular 
electrodes were used in combination with embryonic 
motoneurons, to improve the regeneration through the 
electrode implanted at injured nerves. 
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