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Abstract— During the last decade, the needs for high-

performance computing for distributed scientific 

applications have been addressed over multiple high-

performance environments including clusters and Grid 

computing technologies. Recently, cloud computing 

technology offers cheap and large-scale high-

performance computing environment. Infrastructure as 

a Service cloud (IaaS) offers instant access to large-

scale computing resources. However, the performance 

of the resources can dynamically varies according to 

the changing load conditions on the resources. Further, 

scientific applications require complex 

communication/computation pattern, such as 

optimized MPI for communication. For these reasons, 

it is challenging to achieve high-performance in a 

cloud environment. 

This paper presents an initial framework towards 

achieving adaptive high-performance execution for a 

distributed scientific application over a private 

dynamic cloud environment. The adaptation is 

achieved by migrating the distributed components of 

the benchmark application, which suffer performance 

degradation, to a promising different resource. The 

proposed framework contains a monitoring layer 

which monitors the execution times of the running 

application’s components. A decision layer issues the 

migration decision considering the execution times 

and the cost of the migration.  Finally, the paper 

presents the applicability of the proposed framework 

on a private IaaS cloud managed by Eucalyptus. 
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I. INTRODUCTION 

Scientific applications are usually distributed large-

scale compute intensive application. As a result, it has 

been executed using high-performance computing 

resources to reduce the computational complexity into 

a reasonable time, such as supercomputers [1]. 

However, such high-performance computing resources 

are expensive. As a result, the Grid computing 

technology has emerged to provide the scientists with 

cheap high-performance and large-scale computing 

resources through collaboration among multiple 

academic organizations [2-6]. However, there could 

be limitations between the hosting operating systems 

and the software requirements of the developed 

scientific applications. For example, scientific 

applications may require specific tools and APIs that 

have to be available during the runtime on the Grid’s 

resources. For example, distributed scientific 

applications with complex 

communication/communication patterns during 

runtime require message-passing tools, such as 

parallel vector machines (PVM) and message passing 

interface (MPI), on the Grid’s resources during the 

runtime.  However, the required tools and APIs may 

not be available on the resources of the Grid where 

applications are scheduled for execution [7]. 

Cloud computing has emerged as the cutting edge 

IT technology to provide a flexible, on-demand elastic 

computing infrastructure [8, 9]. The cloud computing 

has gained its increasing popularity by the 

advancement of the virtualization technology. The 

virtualization creates different logical machines, called 

virtual machines (VM) images, to share the same 

hardware, and at the same time run isolated from each 

other. The isolated VMs may include different running 

operating systems (OS) and the user level software 

installed on an operating system. The Virtual Machine 

Monitor (VMM), called hypervisor, is a software layer 

mediates the access of the VMs to the physical 

resources, and allows the VMs to operate as if they 

were running on different machines independently 

[10]. As a result, a flexible control over the VM image 

can be obtained which is hard to have such feature 

with other high-performance infrastructure, such as 

the Grid and Clusters [11]. Popular virtualization 

hypervisors are VMware vSphere [12], XEN [13] and 

KVM [14]. 

The cloud management is a software layer on top of 

the virtual machine hypervisor VMM, in order to 

controls the VMs. This layer accesses the entire 

physical infrastructure, manages all the available 

virtual resources and delivers the virtual resources as a 

service over high-speed Internet. Cloud computing 

technology brings the potential for providing high-

performance and the available supercomputing power 

to the public free or for small charges. There is a 

number of open source Cloud management layers, 

such as Eucalyptus [15, 16], Nimbus [17] and 

OpenNebula [18], which allow organizations and 
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individuals to build private clouds to have full control 

and to improve the utilization of the available 

computational resources.  

The promising features offered by Infrastructure as 

a Service (IaaS) Cloud, such as on-demand access to 

large-scale computing resources and elasticity, has 

made a clear trend towards using the cloud in 

scientific computing [7, 19-21]. Many research has 

been conducted to study the performance of scientific 

application on cloud environments, especially in 

medical imaging, astronomy and physics [19]. 

However, to the best of our knowledge, none of these 

studies has considered the dynamic nature of the cloud 

where the executed application may suffer 

performance degradation during runtime because of 

the changing load conditions on the allocated 

resources.  

This paper presents an initial design to a framework 

for an adaptive execution of distributed scientific 

applications on a dynamic cloud environment. The 

adaptive execution is achieved by terminating and 

checkpointing the distributed component of the 

application, which suffer performance degradation, 

and restarting a new instance on a promising available 

resource. A similar framework was designed on a Grid 

environment [22]. The framework is adopted for 

adaptive execution on a cloud environment, including 

cloud support for redistribution of the checkpointing 

files, resources monitoring, resource allocation and 

restarting the distributed components of the executed 

application on a different node. 

The remainder of this paper is organised as follows. 

Section 2 presents the related work on cloud 

computing and experiences in executing scientific 

applications in cloud environments as well as 

adaptation in the cloud. Section 3 presents the 

proposed adaptive framework for executing a 

scientific application on a private cloud environment. 

Section 4 describes the proposed cloud environment, 

the experimental setup, and the experimental results. 

Finally, conclusions and future work are given in 

Section 5. 

II. BACKGROUND  

Several research projects have been conducted to 

study the performance of scientific applications on 

cloud environments, especially in medical imaging [7], 

astronomy [20] and physics [21]. In [21], an analysis 

of the feasibility of executing a distributed multi-

physics coupled models application on a private cloud 

environment is conducted. The communication pattern 

is employed using MPI and Open-MX as optimized 

runtime tools for communication. The performance 

analysis has shown that assigning multiple cores per 

VM can achieve a slight better execution times 

performance than execution times achieved using a 

standalone machine. Other research projects, such as 

Science Cloud [19] and Future Grid [20], have been 

conducted to execute scientific application on a cloud 

environment. Further, in [23], an evaluation of the 

impact of Xen on MPI distributed applications on a 

private cloud is conducted.  

In [19], a framework has been developed for 

executing MPI scientific applications on a Cloud 

environment. The framework achieved high-

performance by making the application elastic over 

the compute resources, i.e. increasing the number of 

instances of the components of the application 

whenever a performance degradation is discovered. 

This approach achieves the adaptation by load 

balancing the workload of the whole application over 

the available compute resources. Our proposed 

approach depends on discovering the compute 

resources which causes the degradation of the 

performance and migrating the components of the 

application to compute resources with less load 

conditions. The results have shown that the overhead 

of the communication is small and the adaptation is 

feasible. In [24], a mechanism has been presented for 

executing multithread OpenMP applications on a 

cloud environment. The proposed mechanism 

achieves the adaptation in terms of controlling the 

virtual machines (VMs), i.e increasing/decreasing the 

number of CPUs and amount of assigned memory to 

each VM, according to the number of threads in 

execution. This approach focuses on the dynamic 

changing requirement of the application during 

runtime. However, our proposed approach focuses on 

distributed iterative application. In this type of 

application, the response time for each iteration are 

approximately the same. 

Many different approaches have targeted adaptation 

of server-based applications on cloud environment 

[25-27]. These mechanisms focus only on the 

unpredictable changing conditions of the workloads 

during runtime. They handle the degradation of the 

performance by increasing the number of the virtual 

machines which host the application components, and 

by load balancing the increasing workloads on the 

replicated virtual machines instances. Our approach is 

different by focusing in the adaptation of the long-

running distributed scientific application where these 

applications are designed to execute on a specific 

number of compute resources, and cannot explore 

elasticity using replication mechanism. 

 

III. THE PROPOSED ADAPTIVE FRAMEWORK 

This section starts with a detailed description of the 

benchmark application used in the study, then a 

presentation of the cloud architecture used for 

executing the application. Finally a detailed 

description of the proposed adaptive framework. 

A. The Benchmark Application Description 

The benchmark application used in this study is the 

Multi-physics coupled model application [21]. The 

importance of the coupled model application comes 

from the outstanding advantage of simulating complex 

scientific phenomena with an advanced accuracy in 
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different areas, such as climate, space weather, solid 

rockets, fluid structure interaction, heart disease and 

cancer studies [28]. Coupling together different 

models of individual systems, which affect the system 

of interest, provides an accurate simulation for 

phenomena under study [22]. These types of 

application are large-scale, long running which would 

require high-performance execution environment and 

computation time in order of weeks if not months to 

produce the results. In computational terms, coupled 

models can be viewed as distributed component-based 

applications in which each individual model becomes 

a software component. In the general coupling 

framework, reported in [1, 9], for example, each 

individual model embodies three phases of operation, 

namely initialization, iteration and termination, as 

shown in Figure 1. The models are synchronized via 

exchange of information in a series of put() and get() 

calls to the run-time architecture during each iteration. 

For each message transfer, the sender model executes 

put() with a suitable data structure, and the receiver 

model receives the communicated data by executing a 

corresponding get(). The data sent between the models 

is termed coupling data. Each individual model may 

act at a different length or time scale, or focus on a 

distinct underlying physical phenomenon.  

 

Each model repeatedly perform one round of get()s, 

then do some work based on the received coupling 

data, then perform one round of put()s. A single cycle 

of this iteration is known as a minor cycle and is 

equivalent to one time-step in the underlying iterative 

model. But, different scientific models are allowed to 

iterate at different rates and transformer models are 

then required in order to reconcile these rates. For 

example, if there are two models coupled together, 

and one model executes n rounds of put()s for every 

round of get()s in the second model, an intermediate 

n-for-1 transformer model is required to perform the 

necessary reconciliation [21]. An n-for-1 transformer 

thus performs n minor cycles during which it performs 

n rounds of get()s before performing one round of 

put()s. A 1-for-n transformer performs n minor cycles 

during which it performs one get() group followed by 

n put() groups. The resulting cycle of the entire 

coupled model is termed a major cycle. For example, 

the HybridMD coupled model is an interesting 

modelling and simulating complex fluids that handles 

molecular dynamics (MD) coupled to computational 

fluid dynamics (CFD) within a single simulation. The 

main goal is to study fluid flow over a surface [6]. The 

interaction of fluid molecules with the surface is 

modelled atomistically using classical molecular 

dynamics, while the fluid bulk is modelled using a 

continuum method. Each model tackles a separate 

physical region of the system. The data exchange 

between models provides the boundary conditions for 

each region (e.g. temperature and pressure). 

Considering the interaction between the 

hydrodynamics and the specific molecular processes 

near the surface clarifies the properties of these 

physical systems and addresses key problems, such as 

how hydrodynamics effects influence molecular 

interactions at interfaces, at lipid bilayer membranes 

and within individual macromolecules or assemblies 

of them. The HybridMD coupled model consists of 

two models (CFD and MD) and two transformers, as 

shown in Figure 2Figure 2. MD iterates at three times 

the frequency of CFD. Transformer1 is a 1-for-3 

transformer that is used to reconcile the 

communication between CFD and MD. Transformer2 

is a 3-for-1 transformer that reconciles the 

communication between MD and CFD. One major 

cycle of the entire coupled model involves three minor 

cycles of the MD model and one minor cycle of the 

CFD model. 

 

 

 

The architecture of the benchmark application has 

two main advantages for adaptive execution in a cloud 

environment using migration. First, it is easy to 

monitor the execution performance through measuring 

the response time for each timestep. The average 

response time gives a good indication of performance 

degradation, it increases more than a specified 

threshold if the load on the compute node increases. 

Second, it is easy to checkpoint the execution progress 

at the end of each timestep. Hence, the distributed 

component can restart the execution on a different 

compute node from the checkpoint file. 

MD 

1-for-3 

Input: Total_timestep, curr_timestep 
Output: solution 
//Initialization phase 
{start MPI communication } 
//start iterations 
Loop 
 get_coupled_data() 
 {main timestep computation} 
 Put_coupled_data() 
{terminate MPI communication} 
//termination phase 

Figure 1. The structure of distributed coupled model application. 

Figure 2. Data flow between the component models for the HybridMD 
coupled model. 
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B. The Private Cloud Infrastructure 

Eucalyptus is an open source software which 

implements Infrastructure as a service (IaaS) Cloud 

[15]. The IaaS infrastructure allows the end user to 

flexibly execute distributed scientific applications over 

the allocated resources by employing parallel runtimes 

over the accessed VMs images. The main advantage 

of Eucalyptus is that it is compatible with commercial 

cloud products such as Amazon EC2 and S3 [15]. This 

compatibility enables to run a scientific application on 

a private cloud using Eucalyptus and a public cloud 

using Amazon without modification in execution 

framework or the application. Eucalyptus architecture 

consists of a number of components, namely Cloud 

Controller, Node Controller, Cluster Controller, 

Storage Controller, and Walrus, as shown in Figure 3.  

The Cloud Controller (CLC) is responsible for 

managing the available virtual resources, such as 

Servers, network and storage. The Node Controller 

(NC) runs on each physical machine (PM), and 

controls the available virtual machines. The Cluster 

Controller (CC) collects information on the installed 

virtual machines and schedules the VMs for execution 

on the NC. For data storage service, the Storage 

Controller (SC) which manages storage block volumes 

by communicating between NC and CC. Also, Walrus 

is a file-based storage service for the VMs images and 

users data [16].  

 
 

 

 

On each physical machine Xen is used as a VMM 

hypervisor to create the virtual machine of a desired 

configuration. Xen is a popular open source software 

for VMM which is used to obtain high performance of 

multi-cores physical machines [13]. Several research 

has been conducted to study the performance impact 

of Xen on MPI applications [21, 23]. These research 

has proved that Xen can be used to bring higher 

performance especially when several cores are 

assigned to single virtual machine. OpenMPI is used 

as the MPI implementation. Further, in the proposed 

cloud infrastructure, Open-MX is used to reduce the 

high latency of MPI communication over Ethernet 

networks using TCP [29]. 

Figure 3. A private Cloud infrastructure using Eucalyptus. 

Figure 4. The Proposed adaptive high-performance Execution framework. 
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C. The Proposed adaptive High-performance 

Execution framework 

Figure 4 shows the overall architecture of the 

proposed framework. The framework is adopted from 

an architecture for high performance execution of 

distributed scientific application on a grid 

environment [22]. The framework achieves adaptive 

performance through feedback control through three 

main layers.  

The first layer is the high-performance control of 

the whole application (HPC App) which consists of 

three main components, namely communicator, 

predictor, and compute node information (CN Info). 

The communicator interacts with the HPC 

Components. The predictor is mainly a decision layer 

based on the average response time for each 

component of the application and the current load on 

the compute node as a measure of the execution 

progress. Once the predictor discover a performance 

degradation of the application, it issues a migration 

decision. The communicator sends a migration 

decision to HPC component to stop execution, 

checkpoint the progress and redeploy the distributed 

components of the application on the other available 

compute nodes.  

The high-performance of each distributed 

components (HPC Component) is a software wrapper 

for each component. Its main responsibilities are 

checkpointing whenever it is necessary, especially 

when a migration decision is issued. Further, HPC 

component handles the MPI communication between 

the distributed components. Finally, it restarts the 

migrated component from the checkpoint file. 

The loader are responsible for starting the 

components for run when the application starts, or 

restarting a component on a new compute node when 

a migration decision is issued. Further, the loader 

transfer the checkpoint files to the desired compute 

node.  

The framework is deployed on the Eucalyptus. On 

each compute node a virtual machine where the each 

loader and a distributed component of the application 

along with the HPC Component are deployed. The 

HPC App is deployed on another compute node. The 

migration decision is based on the average response 

time for each component, , and the 

remaining number of iterations, . The 

migration decision is issued using the following 

Equation. 

 

 
 

The threshold value is used to control the migration 

decision. The threshold value is set taking into account 

the cost of the checkpointing, checkpointcost, and 

restarting the communication, commcost, as well as 

the expected response time on the new deployment 

configuration, as shown in the following Equation. 

 

 
 

IV. EXPERIMENTAL SETUP AND EVALUATION 

This section evaluates applicability and feasibility 

of the proposed adaptive execution of distributed 

framework using the distributed benchmark 

application described in Section A.  

The experiments are conducted using four physical 

machines, each machine has i7 core Intel 2.2 GHz 

processor and 32GB memory. The virtualization layer 

is based on Xen hypervisor version 4.3. The VMs are 

deployed using Eucalyptus version 4. Each node runs 

Ubuntu version 12 operating system. OpenMPI 

version 1.5 along with Open-MX version 1.4 are used 

as MPI. 1 Gigabit Ethernet network fabric is used for 

networking. On Each compute node, a virtual machine 

is deployed and assigned 4 CPUs and 16 GB memory.  

TABLE 1.  

THE DEPLOYMENT OF THE ADAPTIVE FRAMEWORK ON 

THE CLOUD RESOURCES. 

Compute 

Node 

Number 

deployment 

1 HPC APP + HPC 

Components(transformers) 

2 HPC Component(CFD 

model) 

3 HPC Component(MD model) 

4 No deployment 

 

An initial deployment of each distributed 

component is set on the resources of the set private 

cloud infrastructure, as shown in Table 1. Figure 5 

shows the execution performance of the MD model on 

the deployment configuration shown in Table 1.  As 

shown in the figure, after timestep 120 of the 

execution of the MD model, the load on compute node 

3 is increased by running several instances of a matrix 

multiplication program. After timestep 170, the 

distributed component of the MD model managed to 

stop its execution, checkpoint its progress and restart 

execution at compute node 4.  

 

 

Figure 6 shows the overhead cost of the migration 

in seconds. The major overhead is in restarting the 

MPI communication over the new deployment. The 

overhead is relatively large. However, with the actual 

long-running scientific distributed application, this 

overhead can be tolerated for in the large scale 

execution time.. 
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V. CONCLUSIONS AND FUTURE WORK 

This paper has presented the initial design of a 

framework towards achieving an adaptive 

performance execution for a distributed scientific MPI 

application over a private dynamic Cloud environment. 

The adaptation is based on migrating the distributed 

components of the application, which suffer 

performance degradation, to a promising different 

resource. The proposed framework contains a 

monitoring layer which monitors the execution times 

of the running application’s components. A decision 

layer issues the migration decision considering the 

execution times and the cost of the migration.  Finally, 

the evaluation using a distributed scientific coupled 

model application presents the feasibility of the 

proposed adaptive framework on a private Cloud by 

Eucalyptus Cloud. 

In this paper, the threshold value is set statically 

based on the experience of the overhead cost of the 

migration and restarting the MPI communication. The 

future work will focus on the dynamic placement of 

the threshold value. Further, a simple and accurate 

predictor is required to predict the response times of 

the remaining timesteps based on load conditions of 

the allocated resources. 
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