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Abstract – Most users want their search engine to 

incorporate three key features in query results. This 

paper addresses on the design of search history displays 

to support information seeking (IS). we try  to give 

improved results on the search mechanism, where 

Information needs to be tracked in the perspective 

making the user flexibility to make the complex search 

to the extent of making the format of user-friendly,  To 

better support users  in  their  long-term  information  

quests  on  the  Web, search engines keep track of their 

queries and clicks while searching online. In this paper, 

we study the problem of organizing   a user’s historical   

queries i n t o  g r o u p s  i n  a dynamic and automated 

fashion. Automatically identifying query  groups  is  

helpful  for  a  number  of  different  search engine  

components  and  applications,  such  as  query 

suggestions, result ranking, query alterations, 

sessionization, and collaborative search. 
Keywords - user history, search history, query 
clustering, Search engine, user profiling, task 
identification 

 
1. INTRODUCTION 

With the increasing number of published electronic 

materials, the World Wide Web (WWW) has 

become a vast resource for individuals to acquire 

knowledge, solve problems, and complete tasks that 

use Web information. As  the  size  and  richness  of  

information  on  the  Web grows, so does the variety 

and the complexity of tasks that users  try  to  

accomplish  online.  Users  are  no  longer content 

with issuing simple navigational queries. We use our 

memory to bridge across different information sources 

and activities but human memory is limited and 

selective. Searchers create external memory aids to 

help keep track of progress, plan steps, and collect 

information. users are usually reluctant  to explicitly 

provide their  preferences due to the extra manual 

effort involved, recent research has focused on the 

automatic learning of user preferences from users’ 

search histories or browsed documents and the 

development of personalized systems based on the 

learned user preferences. 

One of information-seeking[15] tasks often performed 

by students  is  Information  Gathering,  which  is the 

extracting,  evaluating,  and  organizing  relevant 

information for a given topic. One important step 

towards enabling services and features that can help 

users during their  complex  search  quests online  is 

the capability to identify  and  group  related  

queries  together.  Recently, some of the major search 

engines have introduced a new “Search History” 

feature, which allows users to track their online 

searches by recording their queries and clicks. The 

user’s past (implicit) indication of document 

relevance we can predict his/her reaction to the 

current retrieved documents.  For  example, if the 

user  searched with the same query “python” before 

and clicked on Python language website’s link, we 

have high confidence that the user would do it again 

this time, and it makes good sense to list that 

webpage in the top. Even when there is no exact 

occurrence of the current query in history, we may 

still find similar queries like “python doc” helpful 

(e.g., discovering that the user prefers results from 

the www.python.org   site).   Recommendations   for   

search history  displays   and   two  search   history  

based   user interface tools are described here, 

which take advantage of automatically recorded 

information. 

In fact, identifying groups of related queries 

has applications beyond helping the users to make 

sense and keep track of queries  and  clicks  in  their  

search  history[5]. First and foremost,  query  

grouping  allows  the  search  engine  to better 

understand a user’s session and potentially tailor 

that  user’s  search  experience  according  to  her  

needs. Once query groups have been identified, 

search engines can  have  a  good  representation  of  

the  search  context behind the current query using 

queries and clicks in the corresponding query group. 

This will help to improve the quality  of  key  

components  of  search  engines  such  as query 

suggestions, result ranking, query alterations, 

sessionization, and collaborative search. For 

example, if a search engine knows that a current 

query “financial statement”  belongs to a {“bank of 

america”, “financial statement”} query group, it can 

boost the rank of the page that  provides information  

about  how to get  a  Bank of America  statement  

instead  of the Wikipedia  article  on “financial  

statement”,  or  the pages related  to financial 

statements from other banks. 

Each query group is a collection of queries by 

the same user that are relevant to each other around  

a   common   informational   need.   These  query 

groups are dynamically updated as the user issues 

new queries, and new query groups may be created 

http://www.python.org/
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over time. Existing click through-based user profiling 

strategies can be  categorized  into document-based  

and  concept  base approaches.  They both  assume  

that  user  clicks  can  be used to infer users’ interests, 

although their inference methods and the outcomes of 

the inference are different. Document-based profiling 

methods try to estimate users’ document preferences 

(i.e., users are interested in some documents more than 

others). 

 

Search history can be divided into short-term 

and long- term types. Short-term search history is 

limited to a single search session, which contains a 

(normally consecutive) sequence of searches with  a 

coherent information need and usually spans a short 

period of time. Often, a user composes an initial query, 

views the returned documents, and  if  unsatisfied,  

modifies  the  query and  repeats  the search process. 

All these activities, which form the short- term search 

history, shed light on the current information need and 

make useful search context. Long-term search 

history[17] is, in contrast, unlimited in time scope 

and may include all search activities in the past. 

Compared with short-term search history, it has several 

advantages. There  is  no  need  to  detect  session  

boundaries (determining whether a previous search 

shares the same information  need as the current 

one), which is often a difficult task. 

Organizing the query groups within  a user’s 

history is challenging for a number of reasons. First, 

related queries may not appear close to one another, as 

a search task may span days or even weeks. This is 

further complicated by the  interleaving  of  queries  

and  clicks  from  different search tasks due to users’ 

multitasking [3], opening multiple  browser  tabs,  and  

frequently changing  search topics. We then evaluate 

the methods on a test set of Web search histories 

collected from some real users. We also find that 

although recent history tends to be much more useful 

than remote history (especially for fresh queries), all 

of the entire history is helpful for improving the search 

accuracy of recurring queries. 

The rest of the paper is organized as follows: 

Section 2 discusses the related works. We classify the 

existing user profiling   strategies   into   two   

categories   and   review methods among the 

categories. In Section 3, we review our personalized 

concept-based clustering strategy to exploit the 

relationship among ambiguous queries according to 

the user conceptual preferences recorded in the 

concept-based user profiles. In Section 4, we present 

the proposed concept-based user profiling strategies. 

Experimental results comparing our user profiling 

strategies are presented in Section 5. Section 6 

concludes the paper. 

 
2. RELATED WORKS 

A user  needs  assessment  is the first  step  in  

designing usable  interfaces.  The task  of users in  

this research  is information   seeking.   Our   goal   

is   to   automatically organize a user’s search history 

into query groups, each containing one or more 

related queries and their corresponding clicks. Each 

query group corresponds to an atomic information 

need that may require a small number of queries and 

clicks related to the same search goal. For example,  

in  the  case  of  navigational  queries,  a  query group 

may involve as few as one query and one click. They 

highlight the importance of external problem 

representation, and planning, and evaluation in 

problem solving,  which  can  be  supported  by  

search  histories. History displays have to incorporate 

both analytical searches and hypertext browsing in 

full-text systems. Explicit representation of searchers’ 

path through a hypertext system can alleviate 

disorientation.Users’ document preferences are first 

extracted from the click  through  data,  and  then,  

used  to  learn  the  user behavior model which is 

usually represented as a set of weighted features. On 

the other hand, concept-based user profiling  methods  

aim  at  capturing  users’  conceptual needs. Users’ 

browsed documents and search histories are 

automatically  mapped  into  a  set  of  topical  

categories. User profiles are created based on the 

users’ preferences on the extracted topical categories. 

Information Gathering [15] is a knowledge 

construction process. Web learners begin this process 

with recognizing an anomalous state of knowledge 

related to a topic (Cole, Leide, Behesht, Large, & 

Brooks, 2005). This state is the interest or concern 

mental state that triggers the information gathering 

process. Thus, they make an initial search plan based 

on their prior knowledge. With each piece of new and 

useful information encountered giving them new ideas 

on their topic, they thus extend or evolve their  plan  

to  other  relevant  topics/subtopics  (Lin  & Belkin, 

2005) or associate the piece of information with their 

knowledge structure. Finally, the process is ended up 

with resolving the anomalous state. 

Information Gathering is a very complex  

information- seeking task. It can be completed not by 

a specific answer but by a series of extractions, 

comparisons, and syntheses of a broad range of 

information related to these topics/subtopics 

(Morrison, Pirolli, & Card, 2001; Sellen, Murphy, & 

Shaw, 2002). Learners are frequently required to 

maintain many extracted results for later use and 

reference.    However,    to   keep   a   huge   amount   

of information in a human’s mind is difficult because 

the limitation of working memory (Anderson, 2004). 

To support the limitation of memory capacity, 

learners have to employ external memory aids. 

Even the earliest information retrieval systems 

provided some kind of history mechanism. These 

usually involved the display of “query–result set” 

pairs. As an example, Back  (1976)  integrated  search  
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review  features  in  his TIRES   system,   a   

management   information   retrieval system, based on 

the findings of four previous studies and systems. 

Many early commercial  systems had a history feature 

that allowed users to recall past search commands and  

reuse them.  The importance of search  histories in user  

interfaces  has  remained  clear  in  the decades  that 

passed. Hearst (1999) discussed information-seeking 

behaviors and strategies in her chapter on information 

retrieval user interfaces and visualizations [7]. She 

highlighted the need for search system user interfaces 

to show what steps had been  taken  in  the past and 

what short- and long-term strategies had been 

followed. She also called for annotation tools for 

users to comment on the actions  and  information  

found. She concluded that user observations suggest 

the need for search histories in the    user    interface    

of    information    retrieval    and visualization  

systems,  and  she  pointed  out  that  these functions 

are not well supported in current systems. Although 

the need for search histories in search interfaces is 

clear, not many innovative solutions are available 

to present  and  manipulate  them.  One  exception  

is  the Ariadne tool developed by Twidale and 

Nichols (1998). The    Ariadne    system    was    

proposed    to    support collaboration among users by 

visualizing search session histories. The system 

captures “query–result set pairs and displays them to 

the user as thumbnails of screen shots. Searchers   

can   annotate   and   share   these   graphical 

histories with others. This article reports on the 

results of a thorough examination of the use of 

interaction histories in one specific application domain 

area, legal information seeking, and propose search 

history tools for user support. The problem is related to 

coordination of information. To coordinate information 

kept in the three kinds of memory aids, students have 

to frequently change attention among them. The 

frequently changed on attention make students easily   

disoriented.    In    addition,    the    structures    of 

information  organized  in  the  three  memory  aids  

are inconsistent. For example, students organize 

bookmarks in a hierarchical structure but keep open 

Web pages in a sequential order. To find and recall a 

piece of information that  is  previously kept  in  these  

memory aids  becomes difficult. 

A query group is an ordered list of queries, qi, 

together with the corresponding set of clicked URLs, 

clki of qi. A query group is denoted as s = h{q1, 

clk1}, . . . , {qk, clkk}i. The specific formulation of 

our problem is as follows: 

Given: a set of existing query groups of a user, S = 

{s1, s2, . . . , sn}, and her current query and clicks, 

{qc, clkc}, Find: the query group for {qc, clkc}, 

which is either one of the existing query groups in S 

that is most related to, or a new query group sc = {qc, 

clkc} if there does not exist a query group in S that is 

not sufficiently related to {qc, clkc}. Below, we will 

motivate the dynamic nature of this formulation, and 

give an overview of the solution. The core of the 

solution is a measure of relevance between two 

queries (or query groups). We will further motivate 

the need to go beyond baseline relevance measures 

that rely on time or text, and instead propose a 

relevance measure based on signals from search logs. 

One approach to the identification of query groups is 

to first treat every query in a user’s history as a 

singleton query group, and then merge these 

singleton query groups in  an  iterative fashion  (in  a 

k-means or  agglomerative way [5]).  

However, this is impractical in our scenario 

for two reasons. First, it may have the undesirable 

effect of changing a user’s existing query groups, 

potentially undoing the user’s own manual efforts in 

organizing her history.  Second,  it  involves  a  high  

computational  cost, since we would have to repeat a 

large number of query group similarity computations 

for every new query. 

 

3.QUERY RELEVANCE USING SEARCH 

LOGS 

 

We  now  develop  the  machinery  to  

define  the  query relevance based on Web search 
logs [2]. Our measure of relevance is aimed at 

capturing two important properties of relevant  

queries, namely: (1) queries that frequently appear  
together  as  reformulations  and  (2)  queries  that 

have induced the users to click on similar sets of 
pages. We start our discussion by introducing three 

search behavior  graphs  that  capture  the  
aforementioned properties. Following that, we show 

how we can use these graphs to compute query 

relevance and how we can incorporate the clicks 
following a user’s query in order to enhance our 

relevance metric. 
One way to identify relevant queries is to 

consider query reformulations that are typically 

found within the query logs of a search  engine. If 

two queries that are issued consecutively  by  many  

users  occur  frequently  enough, they are  likely to  

be  reformulations  of each  other.  To measure the 

relevance between two queries issued by a user, the 

time-based metric, sometime, makes use of the 

interval between the timestamps of the queries within 

the user’s search history. In contrast, our approach is 

defined by the statistical frequency with which two 

queries appear next to each other in the entire query 

log, over all of the users of the system. 

A  different  way  to  capture  relevant  

queries  from  the search logs is to consider queries 

that are likely to induce users to click frequently on 

the same set of URLs. For example, although the 

queries “ipod” and “apple store” do not  share any 

text  or  appear  temporally close  in  a user’s search 

history, they are relevant because they are likely to 

have resulted in clicks about the ipod product. In 
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order  to  capture  such  property of relevant  queries,  

we construct a graph called the query click graph, 

QCG. The query reformulation graph, QRG, and the 

query click graph, QCG, capture two important 

properties of relevant queries respectively. In order to 

make more effective use of both properties, we 

combine the query reformulation information within 

QRG and the query click information within QCG into 

a single graph, QFG = (VQ, EQF), that we refer to as 

the query fusion graph. At a high level, EQF 

contains the set of edges that exist in either EQR or 

EQC. The weight of edge (qi, qj) in QFG, wf (qi, qj), 

is taken to be a linear sum of the edge’s weights, wr 

(qi, qj) in EQR and wc(qi, qj) in EQC,as follows: 

wf (qi, qj) = _ × wr(qi, qj) + (1 − α) × wc (qi, 

qj) Algorithm   [4]  for  calculating  the  query  

relevance  by simulating random walks over the query 

fusion graph. 

Relevance(q) 

Input: 

1) the query fusion graph, QFG 

2) the jump vector, g 

3) the damping factor, d 

 4) the total number of random walks, numRWs 

5) the size of neighborhood, maxHops 

6) the given query, q 

 

Out

put: 

 

the fusion relevance vector for q, 

relF q 

( 0) Initialize relF q = 0 

( 1) numWalks = 0; numVisits 

= 0 ( 2) while numWalks < 

numRWs 

( 3) numHops = 0; v = q 

( 4) while v 6= NULL ^ numHops < maxHops 

( 5) numHops++ 

( 6) relF q (v)++; numVisits++ 

( 7) v = SelectNextNodeToVisit 

(v) ( 8) numWalks++ 

(  9)  For  each  v,  normalize  relF  q  (v)  =  relF  

,  q 

(v)/numVisits 
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we  use  the  jump  vector  gq  to  pick  the  random  walk 

starting 

point. At each node v, for a given damping factor d, the 

random  walk  either  continues  by following  one of the 

outgoing edges of v with a probability of d, or stops and 

re-starts at one of the starting points in gq with a 

probability of (1−d). Then, each outgoing edge, (v, qi), is 

selected with probability wf (v, qi), and the random walk 

always re-starts if v has no outgoing edge. The selection 

of the next node to visit based on the outgoing edges of 

the current node v in QFG and the damping factor d is 

performed by the SelectNextNodeToVisit process in Step 

(7) of the algorithm. In addition to query reformulations, 

user activities also include clicks on the URLs following 

each query submission. 

 

The clicks of a user may further help us infer her 

search interests behind a query q and thus identify queries 

and query groups relevant to q more effectively. We give a 

motivating example that illustrates why it may be helpful 

to take into account clicked URLs of q to compute the 

query relevance. Let us consider that a user submitted a 

query “jaguar”.  If we compute the relevance  scores  of 

each query in VQ with respect to the given query only, 

both  the  queries  related  to the car  “jaguar”  and  those 

related to the animal “jaguar” get high fusion relevance 

scores. This happens because we do not know the actual 

search  interest  of the current user when she issues the 

query “jaguar”. However, if we know the URLs clicked by 

the current  user  following the query “jaguar”  (e.g. the 

Wikipedia article on animal “jaguar”), we can infer the 

search interest behind the current query and assign query 

relevance  scores  to queries  in  VQ accordingly.  In  this 

way,  by making  use  of  the  clicks,  we  can  give much 

higher   query  relevance   scores  to  queries  related  to 

“animal jaguar” than those related to “car jaguar”. 

 
 
4. QUERY GROUPING USING THE QFG 

 

In   this   section,   we   outline   our   proposed  similarity 

function simrel to be used in the online query grouping 

process  outline.  For  each  query,  we  maintain  a  query 

image, which represents the relevance of other queries to 

this query. For each query group, we maintain a context 

vector,  which   aggregates  the  images  of  its  member 

queries  to  form  an  overall  representation.   We  then 

propose a similarity function simrel for two query groups 

based on these concepts of context vectors and query 

images. Note that our proposed definitions of query 

reformulation graph, query images, and context vectors 

are crucial ingredients, which lend significant novelty to 

the Markov chain process for determining relevance 

between queries and query groups[4]. 

 

Context  Vector.  For  each  query group,  we 

maintain  a context  vector  which  is used to compute 

the similarity between the query group and the user’s 

latest singleton query  group.  The  context  vector  for  a  

query group  s, denoted cxts, contains the relevance 

scores of each query in   VQ   to  the  query  group  s,   

and  is  obtained   by aggregating  the fusion  relevance 

vectors of the queries and clicks in s. If s is a singleton 

query group containing only {qs1 , clks1}, it is defined as 

the fusion relevance vector  rel(qs1,clks1  ).  For  a  query 

group  s  =  h{qs1  , clks1}, . . . , {qsk , clksk}i with k > 1, 

there are a number of  different  ways  to  define  cxts.  For  

instance,  we can define  it  as  the  fusion  relevance  

vector  of  the  most recently added  query and  clicks,  

rel(qsk  ,clksk).  Other possibilities include the average or 

the weighted sum of all the fusion relevance vectors of 

the queries and clicks in the query group. 

 

Query  Image,  The  fusion  relevance  vector  of  a  

given query q, relq, captures the degree of relevance of 

each query q0 2 VQ to q. However, we observed that it is 

not effective or robust to use relq itself as a relevance 

measure for our online query grouping. We may use the 

relevance value in the fusion relevance vectors, rel“fs00 

(“boa00) or rel“boa00 (“fs00). Usually, however, it is a 

very tiny number that does not comprehensively express 

the relevance of the search tasks of the queries, thus is not 

an adequate relevance measure for an effective and robust 

online query grouping. Instead, we want to capture the 

fact that both queries highly pertain to financials. 

 

Online  Query Grouping.  The similarity metric 

that  we described in Definition 4.1 operates on the 

images of a query and a query group. Some applications 

such as query suggestion may be facilitated by fast on-the 

fly grouping of user queries. For such applications, we can 

avoid performing the random walk computation of fusion 

relevance vector  for  every new query in  real-time, and 

instead pre-compute and cache these vectors for some 

queries in our graph. This works especially well for the 

popular queries. In this case, we are essentially trading off 

disk  storage  for  run-time  performance.  This additional 

storage  space  is  insignificant  relative  to  the  overall 

storage requirement of a search engine. Meanwhile, 

retrieval of fusion relevance vectors from the cache can be 

done in  milliseconds.  Hence,  for  the remainder  of this 

paper, we will focus on evaluating the effectiveness of the 

proposed algorithms in capturing query relevance. 
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5. EXPERIMENTS 

we study the behavior and performance of our 

algorithms on partitioning a user’s query history into one 

or more groups of related queries. For example, for the 

sequence of  queries  “caribbean  cruise”;“bank  of  

america”; “expedia”; “financial statement”, we would 

expect two output partitions: first, {“Caribbean cruise”, 

“expedia”} pertaining to travel-related queries, and, 

second, {“bank of america”, “financial statement”} 

pertaining to money- related queries. 

The empirical findings on the role of search 

histories formed the basis for designing search history 

interfaces. Providing a continuously growing history 

record in the user interface is the most common use of 

search histories. Interface design recommendations for 

displaying search history   data    are   presented   to   

feed   the   recorded information back to the user. Initial 

user interface prototypes are included and described to 

illustrate some of the design recommendations. In addition 

to direct search history displays, tools building on search 

history data can help searchers in search-related tasks. 

Search-history-based  user  interface  functions  are 

described organized around a scratchpad and a results 

collection   tool.   our   query  grouping  algorithm  relies 

heavily on the use of search logs in two ways: first, to 

construct the query fusion graph used in computing query 

relevance, and, second, to expand the set of queries 

considered when computing query relevance. We start our 

experimental  evaluation,  by  investigating  how  we  can 

make the most out of the search logs. 

 
we evaluated our algorithm over the graphs that 

we constructed  for  increasing  values  of  α.  The  result  

is shown in Figure 1. To this end, we evaluated the 

performance  of  our  algorithm  for  increasing  values  of 

click importance ws and we show the result in Figure 2. 

 
 6. PERFORMANCE COMPARISION 

We  now  compare  the  performance  of  our  

proposed methods against five different baselines. For 

these baselines, we use the same SelectBestQueryGroup as 

in Figure 3 with varying relevance metrics. As the first 

baseline, we use a time-based method (henceforth referred 

to as Time) that groups queries based on whether the time 

difference between a query and the most recent previous 

query is above a threshold. It is essentially the same as the 

Time metric introduced in Section, except that instead of 

measuring similarity as the inverse of the time interval, 

we measure the distance in terms of the time interval (in 

seconds). In particular, since our QFG method relies on 

the accurate estimation of a query image within the query 

fusion graph, it is expected to perform better when the 

estimation   was   based   on   more   information   and   is 

therefore more accurate. On the other hand, if there are 

queries that are rare in the search  logs or do not have 

many  outgoing  edges  in  our  graph  to  facilitate  the 

random walk, the graph-based techniques may perform 

worse due to the lack of edges. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1 Varying mix of query and click graphs 

Time  
Fig.3 Varying the time 

 

 

Fig.2 Varying the click importance wclick 

 

7. CONCLUSIONS 

The query reformulation and click graphs 

contain useful information on user behavior when 

searching online. we systematically explored how to 

exploit long term search history, which consists of past 

queries, result documents and  click  through,  as  useful  

search  context  that  can improve retrieval  

performance.  In  this paper, we show how such 

information can be used effectively for the task of 
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organizing user search histories into query groups. We 

also want to conduct a more in-depth testing that is 

performed with a wide range of material, task, and target 

groups. we would like to combine the user profiles with 

the document selection process, not just the document re-

ranking, to provide a wider set of relevant results to the 

user rather than just reorganizing the existing results. As 

future work, we intend to investigate the usefulness of the 

knowledge  gained  from  these  query groups  in  various 

applications such as providing query suggestions and 

biasing the ranking of search results. 
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