
International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 5 September to October 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 22

User Priority Based Search for Organizing

and Grouping
Vallamalla Pranitha, Mrs. M. Jhansi Lakshmi

P.G. Scholar, Assoc. Prof.

Computer Science and Engineering, Computer Science and Engineering

Global Institute of Engineering and Technology, Hyderabad

Abstract – Most users want their search engine to

incorporate three key features in query results. This

paper addresses on the design of search history displays

to support information seeking (IS). we try to give

improved results on the search mechanism, where

Information needs to be tracked in the perspective

making the user flexibility to make the complex search

to the extent of making the format of user-friendly, To

better support users in their long-term information

quests on the Web, search engines keep track of their

queries and clicks while searching online. In this paper,

we study the problem of organizing a user’s historical

queries i n t o g r o u p s i n a dynamic and automated

fashion. Automatically identifying query groups is

helpful for a number of different search engine

components and applications, such as query

suggestions, result ranking, query alterations,

sessionization, and collaborative search.
Keywords - user history, search history, query
clustering, Search engine, user profiling, task
identification

1. INTRODUCTION

With the increasing number of published electronic

materials, the World Wide Web (WWW) has

become a vast resource for individuals to acquire

knowledge, solve problems, and complete tasks that

use Web information. As the size and richness of

information on the Web grows, so does the variety

and the complexity of tasks that users try to

accomplish online. Users are no longer content

with issuing simple navigational queries. We use our

memory to bridge across different information sources

and activities but human memory is limited and

selective. Searchers create external memory aids to

help keep track of progress, plan steps, and collect

information. users are usually reluctant to explicitly

provide their preferences due to the extra manual

effort involved, recent research has focused on the

automatic learning of user preferences from users’

search histories or browsed documents and the

development of personalized systems based on the

learned user preferences.

One of information-seeking[15] tasks often performed

by students is Information Gathering, which is the

extracting, evaluating, and organizing relevant

information for a given topic. One important step

towards enabling services and features that can help

users during their complex search quests online is

the capability to identify and group related

queries together. Recently, some of the major search

engines have introduced a new “Search History”

feature, which allows users to track their online

searches by recording their queries and clicks. The

user’s past (implicit) indication of document

relevance we can predict his/her reaction to the

current retrieved documents. For example, if the

user searched with the same query “python” before

and clicked on Python language website’s link, we

have high confidence that the user would do it again

this time, and it makes good sense to list that

webpage in the top. Even when there is no exact

occurrence of the current query in history, we may

still find similar queries like “python doc” helpful

(e.g., discovering that the user prefers results from

the www.python.org site). Recommendations for

search history displays and two search history

based user interface tools are described here,

which take advantage of automatically recorded

information.

In fact, identifying groups of related queries

has applications beyond helping the users to make

sense and keep track of queries and clicks in their

search history[5]. First and foremost, query

grouping allows the search engine to better

understand a user’s session and potentially tailor

that user’s search experience according to her

needs. Once query groups have been identified,

search engines can have a good representation of

the search context behind the current query using

queries and clicks in the corresponding query group.

This will help to improve the quality of key

components of search engines such as query

suggestions, result ranking, query alterations,

sessionization, and collaborative search. For

example, if a search engine knows that a current

query “financial statement” belongs to a {“bank of

america”, “financial statement”} query group, it can

boost the rank of the page that provides information

about how to get a Bank of America statement

instead of the Wikipedia article on “financial

statement”, or the pages related to financial

statements from other banks.

Each query group is a collection of queries by

the same user that are relevant to each other around

a common informational need. These query

groups are dynamically updated as the user issues

new queries, and new query groups may be created

http://www.python.org/

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 5 September to October 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 23

over time. Existing click through-based user profiling

strategies can be categorized into document-based

and concept base approaches. They both assume

that user clicks can be used to infer users’ interests,

although their inference methods and the outcomes of

the inference are different. Document-based profiling

methods try to estimate users’ document preferences

(i.e., users are interested in some documents more than

others).

Search history can be divided into short-term

and long- term types. Short-term search history is

limited to a single search session, which contains a

(normally consecutive) sequence of searches with a

coherent information need and usually spans a short

period of time. Often, a user composes an initial query,

views the returned documents, and if unsatisfied,

modifies the query and repeats the search process.

All these activities, which form the short- term search

history, shed light on the current information need and

make useful search context. Long-term search

history[17] is, in contrast, unlimited in time scope

and may include all search activities in the past.

Compared with short-term search history, it has several

advantages. There is no need to detect session

boundaries (determining whether a previous search

shares the same information need as the current

one), which is often a difficult task.

Organizing the query groups within a user’s

history is challenging for a number of reasons. First,

related queries may not appear close to one another, as

a search task may span days or even weeks. This is

further complicated by the interleaving of queries

and clicks from different search tasks due to users’

multitasking [3], opening multiple browser tabs, and

frequently changing search topics. We then evaluate

the methods on a test set of Web search histories

collected from some real users. We also find that

although recent history tends to be much more useful

than remote history (especially for fresh queries), all

of the entire history is helpful for improving the search

accuracy of recurring queries.

The rest of the paper is organized as follows:

Section 2 discusses the related works. We classify the

existing user profiling strategies into two

categories and review methods among the

categories. In Section 3, we review our personalized

concept-based clustering strategy to exploit the

relationship among ambiguous queries according to

the user conceptual preferences recorded in the

concept-based user profiles. In Section 4, we present

the proposed concept-based user profiling strategies.

Experimental results comparing our user profiling

strategies are presented in Section 5. Section 6

concludes the paper.

2. RELATED WORKS

A user needs assessment is the first step in

designing usable interfaces. The task of users in

this research is information seeking. Our goal

is to automatically organize a user’s search history

into query groups, each containing one or more

related queries and their corresponding clicks. Each

query group corresponds to an atomic information

need that may require a small number of queries and

clicks related to the same search goal. For example,

in the case of navigational queries, a query group

may involve as few as one query and one click. They

highlight the importance of external problem

representation, and planning, and evaluation in

problem solving, which can be supported by

search histories. History displays have to incorporate

both analytical searches and hypertext browsing in

full-text systems. Explicit representation of searchers’

path through a hypertext system can alleviate

disorientation.Users’ document preferences are first

extracted from the click through data, and then,

used to learn the user behavior model which is

usually represented as a set of weighted features. On

the other hand, concept-based user profiling methods

aim at capturing users’ conceptual needs. Users’

browsed documents and search histories are

automatically mapped into a set of topical

categories. User profiles are created based on the

users’ preferences on the extracted topical categories.

Information Gathering [15] is a knowledge

construction process. Web learners begin this process

with recognizing an anomalous state of knowledge

related to a topic (Cole, Leide, Behesht, Large, &

Brooks, 2005). This state is the interest or concern

mental state that triggers the information gathering

process. Thus, they make an initial search plan based

on their prior knowledge. With each piece of new and

useful information encountered giving them new ideas

on their topic, they thus extend or evolve their plan

to other relevant topics/subtopics (Lin & Belkin,

2005) or associate the piece of information with their

knowledge structure. Finally, the process is ended up

with resolving the anomalous state.

Information Gathering is a very complex

information- seeking task. It can be completed not by

a specific answer but by a series of extractions,

comparisons, and syntheses of a broad range of

information related to these topics/subtopics

(Morrison, Pirolli, & Card, 2001; Sellen, Murphy, &

Shaw, 2002). Learners are frequently required to

maintain many extracted results for later use and

reference. However, to keep a huge amount

of information in a human’s mind is difficult because

the limitation of working memory (Anderson, 2004).

To support the limitation of memory capacity,

learners have to employ external memory aids.

Even the earliest information retrieval systems

provided some kind of history mechanism. These

usually involved the display of “query–result set”

pairs. As an example, Back (1976) integrated search

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 5 September to October 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 24

review features in his TIRES system, a

management information retrieval system, based on

the findings of four previous studies and systems.

Many early commercial systems had a history feature

that allowed users to recall past search commands and

reuse them. The importance of search histories in user

interfaces has remained clear in the decades that

passed. Hearst (1999) discussed information-seeking

behaviors and strategies in her chapter on information

retrieval user interfaces and visualizations [7]. She

highlighted the need for search system user interfaces

to show what steps had been taken in the past and

what short- and long-term strategies had been

followed. She also called for annotation tools for

users to comment on the actions and information

found. She concluded that user observations suggest

the need for search histories in the user interface

of information retrieval and visualization

systems, and she pointed out that these functions

are not well supported in current systems. Although

the need for search histories in search interfaces is

clear, not many innovative solutions are available

to present and manipulate them. One exception

is the Ariadne tool developed by Twidale and

Nichols (1998). The Ariadne system was

proposed to support collaboration among users by

visualizing search session histories. The system

captures “query–result set pairs and displays them to

the user as thumbnails of screen shots. Searchers

can annotate and share these graphical

histories with others. This article reports on the

results of a thorough examination of the use of

interaction histories in one specific application domain

area, legal information seeking, and propose search

history tools for user support. The problem is related to

coordination of information. To coordinate information

kept in the three kinds of memory aids, students have

to frequently change attention among them. The

frequently changed on attention make students easily

disoriented. In addition, the structures of

information organized in the three memory aids

are inconsistent. For example, students organize

bookmarks in a hierarchical structure but keep open

Web pages in a sequential order. To find and recall a

piece of information that is previously kept in these

memory aids becomes difficult.

A query group is an ordered list of queries, qi,

together with the corresponding set of clicked URLs,

clki of qi. A query group is denoted as s = h{q1,

clk1}, . . . , {qk, clkk}i. The specific formulation of

our problem is as follows:

Given: a set of existing query groups of a user, S =

{s1, s2, . . . , sn}, and her current query and clicks,

{qc, clkc}, Find: the query group for {qc, clkc},

which is either one of the existing query groups in S

that is most related to, or a new query group sc = {qc,

clkc} if there does not exist a query group in S that is

not sufficiently related to {qc, clkc}. Below, we will

motivate the dynamic nature of this formulation, and

give an overview of the solution. The core of the

solution is a measure of relevance between two

queries (or query groups). We will further motivate

the need to go beyond baseline relevance measures

that rely on time or text, and instead propose a

relevance measure based on signals from search logs.

One approach to the identification of query groups is

to first treat every query in a user’s history as a

singleton query group, and then merge these

singleton query groups in an iterative fashion (in a

k-means or agglomerative way [5]).

However, this is impractical in our scenario

for two reasons. First, it may have the undesirable

effect of changing a user’s existing query groups,

potentially undoing the user’s own manual efforts in

organizing her history. Second, it involves a high

computational cost, since we would have to repeat a

large number of query group similarity computations

for every new query.

3.QUERY RELEVANCE USING SEARCH

LOGS

We now develop the machinery to

define the query relevance based on Web search
logs [2]. Our measure of relevance is aimed at

capturing two important properties of relevant

queries, namely: (1) queries that frequently appear
together as reformulations and (2) queries that

have induced the users to click on similar sets of
pages. We start our discussion by introducing three

search behavior graphs that capture the
aforementioned properties. Following that, we show

how we can use these graphs to compute query

relevance and how we can incorporate the clicks
following a user’s query in order to enhance our

relevance metric.
One way to identify relevant queries is to

consider query reformulations that are typically

found within the query logs of a search engine. If

two queries that are issued consecutively by many

users occur frequently enough, they are likely to

be reformulations of each other. To measure the

relevance between two queries issued by a user, the

time-based metric, sometime, makes use of the

interval between the timestamps of the queries within

the user’s search history. In contrast, our approach is

defined by the statistical frequency with which two

queries appear next to each other in the entire query

log, over all of the users of the system.

A different way to capture relevant

queries from the search logs is to consider queries

that are likely to induce users to click frequently on

the same set of URLs. For example, although the

queries “ipod” and “apple store” do not share any

text or appear temporally close in a user’s search

history, they are relevant because they are likely to

have resulted in clicks about the ipod product. In

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 5 September to October 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 25

order to capture such property of relevant queries,

we construct a graph called the query click graph,

QCG. The query reformulation graph, QRG, and the

query click graph, QCG, capture two important

properties of relevant queries respectively. In order to

make more effective use of both properties, we

combine the query reformulation information within

QRG and the query click information within QCG into

a single graph, QFG = (VQ, EQF), that we refer to as

the query fusion graph. At a high level, EQF

contains the set of edges that exist in either EQR or

EQC. The weight of edge (qi, qj) in QFG, wf (qi, qj),

is taken to be a linear sum of the edge’s weights, wr

(qi, qj) in EQR and wc(qi, qj) in EQC,as follows:

wf (qi, qj) = _ × wr(qi, qj) + (1 − α) × wc (qi,

qj) Algorithm [4] for calculating the query

relevance by simulating random walks over the query

fusion graph.

Relevance(q)

Input:

1) the query fusion graph, QFG

2) the jump vector, g

3) the damping factor, d

 4) the total number of random walks, numRWs

5) the size of neighborhood, maxHops

6) the given query, q

Out

put:

the fusion relevance vector for q,

relF q

(0) Initialize relF q = 0

(1) numWalks = 0; numVisits

= 0 (2) while numWalks <

numRWs

(3) numHops = 0; v = q

(4) while v 6= NULL ^ numHops < maxHops

(5) numHops++

(6) relF q (v)++; numVisits++

(7) v = SelectNextNodeToVisit

(v) (8) numWalks++

(9) For each v, normalize relF q (v) = relF

, q

(v)/numVisits

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 5 September to October 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 26

we use the jump vector gq to pick the random walk

starting

point. At each node v, for a given damping factor d, the

random walk either continues by following one of the

outgoing edges of v with a probability of d, or stops and

re-starts at one of the starting points in gq with a

probability of (1−d). Then, each outgoing edge, (v, qi), is

selected with probability wf (v, qi), and the random walk

always re-starts if v has no outgoing edge. The selection

of the next node to visit based on the outgoing edges of

the current node v in QFG and the damping factor d is

performed by the SelectNextNodeToVisit process in Step

(7) of the algorithm. In addition to query reformulations,

user activities also include clicks on the URLs following

each query submission.

The clicks of a user may further help us infer her

search interests behind a query q and thus identify queries

and query groups relevant to q more effectively. We give a

motivating example that illustrates why it may be helpful

to take into account clicked URLs of q to compute the

query relevance. Let us consider that a user submitted a

query “jaguar”. If we compute the relevance scores of

each query in VQ with respect to the given query only,

both the queries related to the car “jaguar” and those

related to the animal “jaguar” get high fusion relevance

scores. This happens because we do not know the actual

search interest of the current user when she issues the

query “jaguar”. However, if we know the URLs clicked by

the current user following the query “jaguar” (e.g. the

Wikipedia article on animal “jaguar”), we can infer the

search interest behind the current query and assign query

relevance scores to queries in VQ accordingly. In this

way, by making use of the clicks, we can give much

higher query relevance scores to queries related to

“animal jaguar” than those related to “car jaguar”.

4. QUERY GROUPING USING THE QFG

In this section, we outline our proposed similarity

function simrel to be used in the online query grouping

process outline. For each query, we maintain a query

image, which represents the relevance of other queries to

this query. For each query group, we maintain a context

vector, which aggregates the images of its member

queries to form an overall representation. We then

propose a similarity function simrel for two query groups

based on these concepts of context vectors and query

images. Note that our proposed definitions of query

reformulation graph, query images, and context vectors

are crucial ingredients, which lend significant novelty to

the Markov chain process for determining relevance

between queries and query groups[4].

Context Vector. For each query group, we

maintain a context vector which is used to compute

the similarity between the query group and the user’s

latest singleton query group. The context vector for a

query group s, denoted cxts, contains the relevance

scores of each query in VQ to the query group s,

and is obtained by aggregating the fusion relevance

vectors of the queries and clicks in s. If s is a singleton

query group containing only {qs1 , clks1}, it is defined as

the fusion relevance vector rel(qs1,clks1). For a query

group s = h{qs1 , clks1}, . . . , {qsk , clksk}i with k > 1,

there are a number of different ways to define cxts. For

instance, we can define it as the fusion relevance

vector of the most recently added query and clicks,

rel(qsk ,clksk). Other possibilities include the average or

the weighted sum of all the fusion relevance vectors of

the queries and clicks in the query group.

Query Image, The fusion relevance vector of a

given query q, relq, captures the degree of relevance of

each query q0 2 VQ to q. However, we observed that it is

not effective or robust to use relq itself as a relevance

measure for our online query grouping. We may use the

relevance value in the fusion relevance vectors, rel“fs00

(“boa00) or rel“boa00 (“fs00). Usually, however, it is a

very tiny number that does not comprehensively express

the relevance of the search tasks of the queries, thus is not

an adequate relevance measure for an effective and robust

online query grouping. Instead, we want to capture the

fact that both queries highly pertain to financials.

Online Query Grouping. The similarity metric

that we described in Definition 4.1 operates on the

images of a query and a query group. Some applications

such as query suggestion may be facilitated by fast on-the

fly grouping of user queries. For such applications, we can

avoid performing the random walk computation of fusion

relevance vector for every new query in real-time, and

instead pre-compute and cache these vectors for some

queries in our graph. This works especially well for the

popular queries. In this case, we are essentially trading off

disk storage for run-time performance. This additional

storage space is insignificant relative to the overall

storage requirement of a search engine. Meanwhile,

retrieval of fusion relevance vectors from the cache can be

done in milliseconds. Hence, for the remainder of this

paper, we will focus on evaluating the effectiveness of the

proposed algorithms in capturing query relevance.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 5 September to October 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 27

5. EXPERIMENTS

we study the behavior and performance of our

algorithms on partitioning a user’s query history into one

or more groups of related queries. For example, for the

sequence of queries “caribbean cruise”;“bank of

america”; “expedia”; “financial statement”, we would

expect two output partitions: first, {“Caribbean cruise”,

“expedia”} pertaining to travel-related queries, and,

second, {“bank of america”, “financial statement”}

pertaining to money- related queries.

The empirical findings on the role of search

histories formed the basis for designing search history

interfaces. Providing a continuously growing history

record in the user interface is the most common use of

search histories. Interface design recommendations for

displaying search history data are presented to

feed the recorded information back to the user. Initial

user interface prototypes are included and described to

illustrate some of the design recommendations. In addition

to direct search history displays, tools building on search

history data can help searchers in search-related tasks.

Search-history-based user interface functions are

described organized around a scratchpad and a results

collection tool. our query grouping algorithm relies

heavily on the use of search logs in two ways: first, to

construct the query fusion graph used in computing query

relevance, and, second, to expand the set of queries

considered when computing query relevance. We start our

experimental evaluation, by investigating how we can

make the most out of the search logs.

we evaluated our algorithm over the graphs that

we constructed for increasing values of α. The result

is shown in Figure 1. To this end, we evaluated the

performance of our algorithm for increasing values of

click importance ws and we show the result in Figure 2.

 6. PERFORMANCE COMPARISION

We now compare the performance of our

proposed methods against five different baselines. For

these baselines, we use the same SelectBestQueryGroup as

in Figure 3 with varying relevance metrics. As the first

baseline, we use a time-based method (henceforth referred

to as Time) that groups queries based on whether the time

difference between a query and the most recent previous

query is above a threshold. It is essentially the same as the

Time metric introduced in Section, except that instead of

measuring similarity as the inverse of the time interval,

we measure the distance in terms of the time interval (in

seconds). In particular, since our QFG method relies on

the accurate estimation of a query image within the query

fusion graph, it is expected to perform better when the

estimation was based on more information and is

therefore more accurate. On the other hand, if there are

queries that are rare in the search logs or do not have

many outgoing edges in our graph to facilitate the

random walk, the graph-based techniques may perform

worse due to the lack of edges.

Fig.1 Varying mix of query and click graphs

Time
Fig.3 Varying the time

Fig.2 Varying the click importance wclick

7. CONCLUSIONS

The query reformulation and click graphs

contain useful information on user behavior when

searching online. we systematically explored how to

exploit long term search history, which consists of past

queries, result documents and click through, as useful

search context that can improve retrieval

performance. In this paper, we show how such

information can be used effectively for the task of

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 5 September to October 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 28

organizing user search histories into query groups. We

also want to conduct a more in-depth testing that is

performed with a wide range of material, task, and target

groups. we would like to combine the user profiles with

the document selection process, not just the document re-

ranking, to provide a wider set of relevant results to the

user rather than just reorganizing the existing results. As

future work, we intend to investigate the usefulness of the

knowledge gained from these query groups in various

applications such as providing query suggestions and

biasing the ranking of search results.

REFERENCES

[1] J. Han and M. Kamber, “Data Mining: Concepts and

Techniques”,Morgan Kaufmann, 2000.

[2] A. Broder, “A taxonomy of web search,” SIGIR Forum,

2002.

[3] A. Spink, M. Park, B. J. Jansen, and J. Pedersen, “Multitasking

during Web search sessions”, Information Processing and

Management, 2006.

[4] Heasoo Hwang, Hady W. Lauw, Lise Getoor and Alexandros

Ntoulas,” Organizing User Search Histories”,in conf. IEEE

Transactions on Knowledge and Data Engineering,2012.

[5] D. Beeferman and A. Berger, “Agglomerative clustering of a

search engine query log,” in KDD,

2000.

[6] J. Teevan, E. Adar, R. Jones, and M. A. S. Potts, “Information

reretrieval: repeat queries in yahoo’s logs,” in SIGIR. New York,

2007.

[7] Komlodi, A,” Search history for user support in information

seeking interfaces, University of Maryland”; College Park -2002.

[8] T. Joachims,” Optimizing search engines using click through

data”, In Proceedings of SIGKDD

2002, [9] D. Kelly and J. Teevan,” Implicit feedback for inferring

user preference: A Bibliography”, SIGIR Forum, 2003.

[10] M. Speretta,” Personalizing Search Based on User Search

Histories”, Master's thesis, The University of Kansas, 2004.

[11]E. Agichtein, E. Brill, and S. Dumais, “Improving Web Search

Ranking by Incorporating User Behavior Information,” Proc.

ACMSIGIR, 2006.

[12] E. Agichtein, E. Brill, S. Dumais, and R. Ragno, “Learning User

Interaction Models for Predicting Web Search Result

Preferences,” Proc. ACM SIGIR,

2006.

[13]Aula, A., Jhaveri, N., & Käki, M,” Information search and

re-access strategies of experienced Web users.”, Proceedings of

the 14th international conference on World Wide Web, New

York:2005.

[14] Lee, Y. J.,” Concept mapping your Web searches: a design

rationale and Web-enabled application”, Journal of Computer

Assisted Learning, 2004

[15] Spink, A., Wilson, T. D., Ford, N., Foster, A., & Ellis, D. ,”

Information seeking and mediated searching study. part

3.successive searching. Journal of the American Society for

Information Science and Technology”, 2002.

[16] R. Jones and K. L. Klinkner, “Beyond the session timeout:

Automatic hierarchical segmentation of search topics in query

logs”, in CIKM, 2008.

[17] Bin Tan, Xuehua Shen, ChengXiang Zhai,“ Mining

Long-Term Search History to Improve Search Accuracy“, in

KDD,2006.

[18] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S.

Vigna, “The query-flow graph: Model and applications,” in CIKM,

2008.

